【题目】如图,抛物线与直线交于A,B两点,交x轴与D,C两点,连接AC,已知A(0,3),C(3,0).(1)抛物线的解析式__;(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止.若使点M在整个运动中用时最少,则点E的坐标__.
【答案】y=x2﹣x+3; (2,1).
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据锐角三角函数,可得AE与NE的关系,根据路程与速度,可得点M在整个运动中所用的时间为DE+EN,根据两点之间线段最短,可得当D′、E、N三点共线时,DE+EN最小,根据矩形的判定与性质,可得ND′=OC=3,ON=D′C=DC,根据抛物线与x轴的交点可得OD的长,再求ON的长,可得答案.
解:(1)把A(0,3),C(3,0)代入,
得,解得.
∴抛物线的解析式为y=x2﹣x+3,
故答案为y=x2﹣x+3;
(2)∵A(0,3),C(3,0),
∴OA=OC=3,
∴△AOC是等腰直角三角形,
∴∠OAC=45°,
过点E作EN⊥y轴于N,如图,
在Rt△ANE中,EN=AEsin45°=AE,即AE=EN,
∴点M在整个运动中所用的时间为=DE+EN,
作点D关于AC的对称点D′,连接D′E,
则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,
∴∠D′CD=90°,DE+EN=D′E+EN,
根据两点之间线段最短可得:当D′、E、N三点共线时,DE+EN=D′E+EN最小,
此时,∵∠D′CD=∠D′NO=∠NOC=90°,
∴四边形OCD′N是矩形,
∴ND′=OC=3,ON=D′C=DC.
对于y=x2﹣x+3,当y=0时,有x2﹣x+3=0,
解得:x1=2,x2=3.
∴D(2,0),OD=2,
∴ON=DC=OC﹣OD=3﹣2=1,
∴点E的坐标为(2,1),
故答案为(2,1).
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分别为△ABC三边的长.
(1)如果方程有两个相等的实数根,试判断△ABC的形状并说明理由;
(2)已知a:b:c=3:4:5,求该一元二次方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若△ABC中,其中一个内角是另一个内角的一半,则称△ABC为“半角三角形”.
(1)若Rt△ABC为半角三角形,∠A=90°,则其余两个角的度数为.
(2)如图,以△ABC的边AB为直径画圆,与边AC交于M,与边BC交于N,已知CN=AC
①求证:∠C=60°.
②若△ABC是半角三角形,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么我们称抛物线C1与C2关联.
(1)已知抛物线C1:y=﹣2x2+4x+3与C2:y=2x2+4x﹣1,请判断抛物线C1与抛物线C2是否关联,并说明理由.
(2)抛物线C1:,动点P的坐标为(t,2),将抛物线绕点P旋转180°得到抛物线C2,若抛物线C1与C2关联,求抛物线C2的解析式.
(3)点A为抛物线C1:的顶点,点B为抛物线C1关联的抛物线的顶点,是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在直线x=﹣10上?若存在,求出C点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与轴交于和两点,交轴于点,点、是二次函数图像上的一对对称点,一次函数的图像经过、;
(1)请直接写出点的坐标;
(2)求二次函数的解析式;
(3)根据图像直接写出使一次函数值大于二次函数值的的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC在平面直角坐标系中,点A在y轴上,点C在轴上,OC=4,直线经过点A,交轴于点D,点E在线段BC上,ED⊥AD.
(1)求点E的坐标;
(2)联结BD,求cot∠BDE的值;
(3)点G在直线BC,且∠EDG=45°,求点G的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com