【题目】某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,该小组的出发地记为A,某天检修完毕时,行走记录(单位.千米)如下.
+10,-2,+3,-1,+5,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)距离A最近的一次是哪一次?距离多远?
(3)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?
【答案】(1)26米,在东侧;(2)第三次,距离8米;(3)140升.
【解析】
(1)先求出各组数据的和,再根据结果的正负性即可求解;
(2)分别求出每一次距出发地的路程,再比较即可;
(3)求出各个数的绝对值的和,然后乘以2.8即可求得.
解:(1) (米),
答. 收工时,检修小组距出发地26米,在东侧;
(2)第一次.+10(米); 第二次.+10-2=8(米); 第三次.8+3=11(米)
第四次.11-1=10(米); 第五次.10+5=15(米); 第六次.15-3=12(米)
第七次.12-2=10(米); 第八次.10+11=21(米);第九次21+3=24(米)
第十次.24-4=20(米) ;第十一次.20+6=26(米)
答.距离A最近的一次是第三次,距离8米;
(3)(升).
故答案为:(1)26米,在东侧;(2)第三次,距离8米;(3)140升.
科目:初中数学 来源: 题型:
【题目】如图,将ABCD的边AB延长至点E,使BE=AB,连接DE、EC、BD、DE交BC于点O.
(1)求证:△ABD≌△BEC;
(2)若∠BOD=2∠A,求证:四边形BECD是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论的有__________.(把正确结论的序号都写上去)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边三角形ABC.如图,
(1)分别以点A,B为圆心,大于的AB长为半径作弧,两弧相交于M,N两点;
(2)作直线MN交AB于点D;
(2)分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于H,L两点;
(3)作直线HL交AC于点E;
(4)直线MN与直线HL相交于点O;
(5)连接OA,OB,OC.
根据以上作图过程及所作图形,下列结论:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120°,正确的是( )
A.①②③④B.①③④C.①②③D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法.小华对数学老师说:“我可以用拆叠纸片的方法确定圆心”.小华的作法如下:
第一步:如图1,将残缺的纸片对折,使弧AB的端点A与端点B重合,得到图2;
第二步:将图2继续对折,使弧CD的端点C与端点B重合,得到图3;
第三步:将对折后的图3打开如图4,两条折痕所在直线的交点即为圆心O.
老师肯定了他的作法.那么他确定圆心的依据是_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求若干个相同的不为零的有理数的除法运算叫做除方.
如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”.
一般地,把(a≠0)记作,读作“a的圈n次方”.
(1)直接写出计算结果: _____, _________, ___________,
(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,
请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于_____.
(3)计算 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:=1.73,结果保留两位有效数字)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com