精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长APCDF点,连结CP并延长CPADQ点.给出以下结论:

①四边形AECF为平行四边形;

②∠PBA=APQ;

③△FPC为等腰三角形;

④△APB≌△EPC.

其中正确结论的个数为(  )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】①根据三角形内角和为180°易证∠PAB+PBA=90°,易证四边形AECF是平行四边形,即可解题;

②根据平角定义得:∠APQ+BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;

③根据平行线和翻折的性质得:∠FPC=PCE=BCE,FPC≠FCP,且∠PFC是钝角,FPC不一定为等腰三角形;

④当BP=ADBPC是等边三角形时,APB≌△FDA,即可解题.

①如图,EC,BP交于点G;

∵点P是点B关于直线EC的对称点,

EC垂直平分BP,

EP=EB,

∴∠EBP=EPB,

∵点EAB中点,

AE=EB,

AE=EP,

∴∠PAB=PBA,

∵∠PAB+PBA+APB=180°,即∠PAB+PBA+APE+BPE=2(PAB+PBA)=180°,

∴∠PAB+PBA=90°,

APBP,

AFEC;

AECF,

∴四边形AECF是平行四边形,

故①正确;

②∵∠APB=90°,

∴∠APQ+BPC=90°,

由折叠得:BC=PC,

∴∠BPC=PBC,

∵四边形ABCD是正方形,

∴∠ABC=ABP+PBC=90°,

∴∠ABP=APQ,

故②正确;

③∵AFEC,

∴∠FPC=PCE=BCE,

∵∠PFC是钝角,

BPC是等边三角形,即∠BCE=30°时,才有∠FPC=FCP,

如右图,PCF不一定是等腰三角形,

故③不正确;

④∵AF=EC,AD=BC=PC,ADF=EPC=90°,

RtEPC≌△FDA(HL),

∵∠ADF=APB=90°,FAD=ABP,

BP=ADBPC是等边三角形时,APB≌△FDA,

∴△APB≌△EPC,

故④不正确;

其中正确结论有①②,2个,

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数 y =kx2 +(k +1)x +1(k 为实数),

(1)当 k=3 时,求此函数图象与 x 轴的交点坐标;

(2)判断此函数与 x 轴的交点个数,并说明理由;

(3)当此函数图象为抛物线,且顶点在 x 轴下方,顶点到 y 轴的距离为 2,求 k 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明:如图,已知AD⊥BCEF⊥BC∠1=∠2.

求证: DG∥BA.

证明:∵AD⊥BC,EF⊥BC ( 已知 )

∴∠EFB=90°,∠ADB=90°(_______________________ )

∴∠EFB=∠ADB ( 等量代换 )

∴EF∥AD ( _________________________________ )

∴∠1=∠BAD (________________________________________)

∵∠1=∠2 ( 已知)

(等量代换)

∴DG∥BA. (__________________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣a2关于y轴对称且有最小值﹣1.

(1)求抛物线C1的解析式;

(2)在图1中抛物线C1顶点为A,将抛物线C1 B旋转180°后得到抛物线C2,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线与抛物线C2只有一个公共点,求直线l的解析式.

(3)如图2,先将抛物线 C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C3,设抛物线C3与直线y=x交于C、D两点,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了你最喜欢的沟通方式调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

1)这次统计共抽查了  名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为   

2)将条形统计图补充完整;

3)该校共有1500名学生,请估计该校最喜欢用微信进行沟通的学生有多少名?

4)某天甲、乙两名同学都想从微信“QQ”电话三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了参加荆州市中小学生首届诗词大会,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班8685779285;八(2)班7985928589.通过数据分析,列表如下:

班级

平均分

中位数

众数

方差

八(1

85

b

c

22.8

八(2

a

85

85

19.2

1)直接写出表中abc的值;

2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8分)已知A4m+10)、Bn4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)求△AOB的面积;

3)观察图象,直接写出不等式kx+b0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防甲型H1N1,某校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量ymg)与时间x(min)成正比例,药物燃烧后,yx成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:

(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后yx的函数关系式呢?

(2)研究表明,当空气中每立方米的含药量低于1.6mg时,生方可进教室,那么从消毒开始,至少需要几分钟后,生才能进入教室?

(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂现有甲种原料263千克,乙种原料314千克,计划利用这两种原料生产AB两种产品共100件.生产一件产品所需要的原料及生产成本如下表所示:

甲种原料(单位:千克)

乙种原料(单位:千克)

生产成本(单位:元)

A产品

3

2

120

B产品

2.5

3.5

200

1)该工厂现有的原料能否保证生产需要?若能,有几种生产方案?请你设计出来.

2)设生产AB两种产品的总成本为y元,其中生产A产品x件,试写出yx之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?

查看答案和解析>>

同步练习册答案