2£®ÈçͼËùʾ£¬Ö±Ïßl£ºy=3x+3ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£®°Ñ¡÷AOBÑØyÖá·­ÕÛ£¬µãAÂäµ½µãC£¬Å×ÎïÏß y=ax2+£¨a-5£©x+c¹ýµãB¡¢CÁ½µã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°¶¥µãEµÄ×ø±ê£»
£¨2£©ÈôµãPÔÚ¶Ô³ÆÖáÓÒ²àµÄÅ×ÎïÏßÉÏ£¬ÇÒµãPµÄºá×ø±êΪt£¬Çó¡÷PBCµÄÃæ»ýSÓëtµÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±S¡÷PBC=6ʱ£¬µãMÔÚÅ×ÎïÏßÉÏ£¬BM½»Ïß¶ÎPEÓÚN£¬ÈôANƽ·Ö¡ÏBNE£¬ÇóÂú×ãÌõ¼þµÄµãMµÄ×ø±ê£®

·ÖÎö £¨1£©Ë¼ÏëÇó³öA¡¢BÁ½µã×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ1ÖУ¬µ±PÔÚxÖáÉÏ·½Ê±£¬Á¬½ÓPO£¬ÉèP£¨t£¬t2-4t+3£©£¬¸ù¾ÝS=S¡÷PBO-S¡÷POC-S¡÷OBC¼ÆËã¼´¿É£®Èçͼ2ÖУ¬µ±PÔÚxÖáÏ·½Ê±£¬Á¬½ÓPO£¬ÉèP£¨t£¬t2-4t+3£©£®¸ù¾Ý
S=S¡÷PBO-S¡÷POC-S¡÷OBC¼ÆËã¼´¿É£®
£¨3£©Èçͼ3ÖУ¬Á¬½ÓAE£¬BE£®×÷EH¡ÍODÓÚH£®Ê×ÏÈÖ¤Ã÷AB=AE£¬×÷AM¡ÍBE£¬½»Å×ÎïÏßÓÚM£¬½»PEÓÚN£¬ÓÉ¡÷ANB¡Õ¡÷ANE£¬µÃ¡ÏANB=¡ÏANE£¬Çó³öÖ±ÏßANµÄ½âÎöʽ£¬½â·½³Ì×é¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¡ßÖ±Ïßl£ºy=3x+3ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬
¡àA£¨-1£¬0£©£¬B£¨0£¬3£©£¬
¡ßA¡¢C¹ØÓÚyÖá¶Ô³Æ£¬
¡àC£¨1£¬0£©£¬
°ÑB¡¢CÁ½µã×ø±ê´úÈë y=ax2+£¨a-5£©x+c£¬
µÃµ½$\left\{\begin{array}{l}{c=3}\\{a+a-5+c=0}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{a=1}\\{c=3}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=x2-4x+3£¬
¡ßy=x2-4x+3=£¨x-2£©2-1£¬
¡à¶¥µãE£¨2£¬-1£©£®

£¨2£©Èçͼ1ÖУ¬µ±PÔÚxÖáÉÏ·½Ê±£¬Á¬½ÓPO£¬ÉèP£¨t£¬t2-4t+3£©£®

¡ßS=S¡÷PBO+S¡÷POC-S¡÷OBC=$\frac{1}{2}$¡Á3¡Át+$\frac{1}{2}$¡Á1¡Á£¨t2-4t+3£©-$\frac{3}{2}$=$\frac{1}{2}$t2-$\frac{1}{2}$t£®£¨t¡Ý3£©£¬
Èçͼ2ÖУ¬µ±PÔÚxÖáÏ·½Ê±£¬Á¬½ÓPO£¬ÉèP£¨t£¬t2-4t+3£©£®


S=S¡÷PBO-S¡÷POC-S¡÷OBC=$\frac{1}{2}$¡Á3¡Át-$\frac{1}{2}$¡Á1¡Á£¨t2-4t+3£©-$\frac{3}{2}$=-$\frac{1}{2}$t2+$\frac{7}{2}$t-3£¬£¨2£¼t£¼3£©
×ÛÉÏËùÊö£¬S=$\left\{\begin{array}{l}{-\frac{1}{2}{t}^{2}+\frac{7}{2}t-3}&{£¨2£¼t£¼3£©}\\{\frac{1}{2}{t}^{2}-\frac{1}{2}t}&{£¨t¡Ý3£©}\end{array}\right.$£®

£¨3£©Èçͼ3ÖУ¬Á¬½ÓAE£¬BE£®×÷EH¡ÍODÓÚH£®

¡ßS¡÷PBC=6£¬
ÓÉͼÏó¿ÉÖª£¬µãPÔÚxÖáÉÏ·½£¬
¡à6=$\frac{1}{2}$t2-$\frac{1}{2}$t£¬
¡àt=4»ò-3£¨ÉáÆú£©£¬
¡àµãP×ø±ê£¨4£¬3£©£¬
¡ßAO=EH£¬BO=AH£¬¡ÏAOB=¡ÏAHE£¬
¡à¡÷AOB¡Õ¡÷HEA£¬
¡àAB=AE£¬×÷AM¡ÍBE£¬½»Å×ÎïÏßÓÚM£¬½»PEÓÚN£¬
¡ß¡ÏNAB=¡ÏNAE£¬AB=AE£¬AN=AN£¬
¡à¡÷ANB¡Õ¡÷ANE£¬
¡à¡ÏANB=¡ÏANE£¬
¡à´ËʱµãM¾ÍÊÇÂú×ãÌõ¼þµÄµã£¬
¡ßÖ±ÏßBEµÄ½âÎöʽΪy=-2x+3£¬
¡àÖ±ÏßAMµÄ½âÎöʽΪy=$\frac{1}{2}$x+$\frac{1}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x+\frac{1}{2}}\\{y={x}^{2}-4x+3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{9+\sqrt{41}}{2}}\\{y=\frac{11+\sqrt{41}}{4}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{9-\sqrt{41}}{2}}\\{y=\frac{11-\sqrt{41}}{4}}\end{array}\right.$£¨ÉáÆú£©£®
¡àÂú×ãÌõ¼þµÄµãM×ø±ê£¨$\frac{9+\sqrt{41}}{2}$£¬$\frac{11+\sqrt{41}}{4}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃÕâЩ֪ʶ½â¾öÎÊÌ⣬ѧ»áÀûÓ÷ָÇóÈý½ÇÐÎÃæ»ý£¬Ñ§»á·ÖÀàÌÖÂÛ£¬×¢Òâ²»ÄÜ©½â£¬Ñ§»áÀûÓ÷½³Ì×éÇóÁ½¸öº¯Êý½»µã×ø±ê£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ò»¸öÊýµ¹ÊýµÄÏà·´ÊýÊÇ1$\frac{1}{2}$£¬ÔòÕâ¸öÊýÊÇ-$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®³ö×⳵˾»úСÀîijÌìÏÂÎçÔËӪȫÊÇÔÚ¶«Î÷×ßÏòµÄÈËÃñ´óµÀÉϽøÐеģ¬Èç¹û¹æ¶¨Ïò¶«ÎªÕý£¬ÏòÎ÷Ϊ¸º£¬ÕâÌìÏÂÎçËûµÄÐгµÀï³Ì£¨µ¥Î»£ºÇ§Ã×£©ÈçÏ£º
+15£¬-2£¬+5£¬-1£¬+10£¬-3£¬-2£¬+12£¬+4£¬-5£¬+6
£¨1£©½«×îºóÒ»Ãû³Ë¿ÍË͵½Ä¿µÄµØÊ±£¬Ð¡Àî¾àÏÂÎç³ö³µÊ±µÄ³ö·¢µã¶àÔ¶£¿
£¨2£©ÈôÆû³µºÄÓÍÁ¿Îª0.3Éý/ǧÃ×£¬ÕâÌìÏÂÎçСÀî¹²ºÄÓͶàÉÙÉý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÀûÓÃÈçͼµÄÁ½¸öתÅ̽øÐС°Åä×ÏÉ«¡±µÄÓÎÏ·£¬ÓÃÁÐ±í·¨»ò»­Ê÷״ͼÇó³öÅäµÃ×ÏÉ«µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªan=$\frac{1}{£¨n+1£©^2}$£¨n=1£¬2£¬3£¬¡­£©£¬È磺a1=$\frac{1}{£¨1+1£©^2}$=$\frac{1}{4}$£¬a2=$\frac{1}{£¨2+1£©^2}$=$\frac{1}{9}$£¬¡­£®¼Çb1=2£¨1-a1£©£¬b2=2£¨1-a1£©£¨1-a2£©£¬¡­£¬bn=2£¨1-a1£©£¨1-a2£©¡­£¨1-an£©£¬Ôòͨ¹ý¼ÆËãµÃ³öb2$\frac{4}{3}$£»bn=$\frac{n+1}{n}$£®£¨Óú¬nµÄ´úÊýʽ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈçÓÒͼ£¬ÒÔÊýÖáµÄµ¥Î»³¤µÄÏß¶ÎΪ±ß×÷Èý¸öÊúÁ¢µÄÕý·½ÐΣ¬ÒÔÊýÖáµÄÔ­µãΪԲÐÄ£¬OPµÄ³¤Îª°ë¾¶»­»¡£¬½»ÊýÖáÓÚµãA£¬ÔòµãA±íʾµÄÊýÊÇ-$\sqrt{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=BC£¬µãDÔÚBCÉÏ£¬ÇÒ¡ÏBAD=15¡ã£®
£¨1£©Çó¡ÏCADµÄ¶ÈÊý£»
£¨2£©ÈôAC=12£¬BD=3£¬ÇóADµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³É̳¡ÏúÊÛÒ»ÅúÃûÅÆ³ÄÉÀ£¬Æ½¾ùÿÌì¿ÉÊÛ³ö20¼þ£¬Ã¿¼þÓ¯Àû45Ôª£¬ÎªÁËÀ©´óÏúÊÛ¡¢Ôö¼ÓÓ¯Àû¾¡¿ì¼õÉÙ¿â´æ£¬É̳¡¾ö¶¨²ÉÈ¡Êʵ±µÄ½µ¼Û´ëÊ©£¬¾­µ÷²é·¢ÏÖ£¬Èç¹ûÿ¼þ³ÄÉÀÿ½µ¼Û1Ôª£¬É̳¡Æ½¾ùÿÌì¿É¶àÊÛ³ö4¼þ£¬ÈôÉ̳¡Æ½¾ùÿÌìÓ¯Àû2100Ôª£¬Ã¿¼þ³ÄÉÀÓ¦½µ¼Û¶àÉÙÔª£¿ÇëÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©Î´½µ¼Û֮ǰ£¬Ä³É̳¡³ÄÉÀµÄ×ÜÓ¯ÀûΪ900 Ôª£®
£¨2£©½µ¼Ûºó£¬ÉèijÉ̳¡Ã¿¼þ³ÄÉÀÓ¦½µ¼ÛxÔª£¬Ôòÿ¼þ³ÄÉÀÓ¯Àû£¨45-x£©Ôª£¬Æ½¾ùÿÌì¿ÉÊÛ³ö£¨20+4x£©¼þ£¨Óú¬xµÄ´úÊýʽ½øÐбíʾ£©
£¨3£©ÇëÁгö·½³Ì£¬Çó³öxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßÓëxÖá½»ÓÚA¡¢BÁ½µã£¬Ö±Ïßy=kx+k£¨k¡Ù0£©ÓëÅ×ÎïÏßy=x2+bx+c½»ÓÚB¡¢CÁ½µã£¬Cµã×ø±êΪ£¨-4£¬3£©£®
£¨1£©ÇóBµã×ø±êºÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãFÊÇÅ×ÎïÏßÉÏÒ»¶¯µã£¬µãFµÄºá×ø±êΪx£¬-3¡Üx¡Ü$\frac{1}{2}$£¬µ±¡÷FBC´æÔÚʱ£¬Çó³ö¡÷FBCµÄ×î´óÃæ»ý£»
£¨3£©°ÑÏß¶ÎBCÈÆµãCÄæÊ±ÕëÐýת60¡ã£¬µãBµÄ¶ÔÓ¦µãΪµãD£¬µãEΪÏß¶ÎBDµÄÖе㣮µãP¡¢µãQ·Ö±ðÔÚÏß¶ÎCBºÍÏß¶ÎCDÉÏ£¬Pµã´ÓµãC³ö·¢£¬ÑØÏß¶ÎBC·½ÏòÒÔÿÃëÒ»¸öµ¥Î»µÄËÙ¶ÈÏòµãBÔ˶¯£¬Í¬Ê±µãQ´ÓµãD³ö·¢£¬ÑØÏß¶ÎCD·½ÏòÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÏòµãCÔ˶¯£¬µ±ÆäÖÐÒ»¸öµãµ½´ïÖÕµãʱ£¬ÁíÒ»¸öµãËæÖ®Í£Ö¹Ô˶¯£®Á¬½ÓPQ¡¢PE¡¢QE£¬ÉèÔ˶¯Ê±¼äΪtÃ룬ÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹PEƽ·Ö¡ÏBPQ£¬Í¬Ê±QEƽ·Ö¡ÏPQD£¿Èô´æÔÚ£¬Çó³ötµÄÖµÒÔ¼°PµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸