【题目】如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为___.
【答案】(0,)或(0,15).
【解析】
延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.
如图所示,延长EF交CO于G,
∵EF∥x轴,
∴∠FGP=90°=∠AEF,
∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),
∴点D(,6),
∴k=15,
又∵点E的横坐标为5,
∴点E的纵坐标为=3,即AE=3,
①当点F在AB左侧时,由折叠可得,AF=AO=5,
∴Rt△AEF中,EF==4,
∴GF=5﹣4=1,
设OP=x,则PG=3﹣x,
∵Rt△FGP中,FG2+PG2=PF2,
∴12+(3﹣x)2=x2,
解得x=,
∴点P的坐标为(0,);
②当点F在AB右侧时,同理可得EF=4,
∴GF=5+4=9,
设OP=x,则PG=x﹣3,
∵Rt△FGP中,FG2+PG2=PF2,
∴92+(x﹣3)2=x2,
解得x=15,
∴点P的坐标为(0,15);
故答案为:(0,)或(0,15).
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处, 折痕为AF,若CD=6,则AF等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴交于点,与轴交于点,的平分线交轴于点,点在线段上,以为直径的⊙D经过点.
(1)判断⊙D与轴的位置关系,并说明理由;
(2)求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C出发,以每秒2个单位长度的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造PEQD,设点P运动的时间为t秒.
(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;
(2)当点E落在AC边上时,求t的值;
(3)当点Q在边AB上时,设PEQD的面积为S(S>0),求S与t之间的函数关系式;
(4)连接CD,直接写出CD将PEQD分成的两部分图形面积相等时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过点A(2,0)和点C,抛物线与x轴交于点A和点E(点A在点E的左侧),连接AC,将△ABC沿AC折叠,得到点B的对应点为点D.
(1)求二次函数的表达式;
(2)求点D坐标,并判定点D是否在该二次函数的图象上;
(3)①在线段AC上找一点F,使得△OBF的周长最小,直接写出此时点F的坐标.②在①的基础上,过点F的一条直线与抛物线对称轴右侧部分交于点N,交线段AD于点M,连接NA、ND,使△AMF与△AMN的面积比为4:1,请直接写出△AND的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了开展“阳光体育运动”,计划购买篮球和足球.已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.
(1)每个篮球、每个足球的价格分别为多少元?
(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com