【题目】如图,在矩形ABCD中,AB=5,BC=8,在AB的右侧有一点E,且AE=AB,BE=BC,则CE=________.
【答案】
【解析】
过点E作EH⊥BC于点H,过点A作AG⊥BE于点G,可推出∠AGB=∠BHE=90°,利用等腰三角形的性质求出BG的长,利用勾股定理求出AG的长;再利用矩形的性质去证明∠EBH=∠BAG,从而可以得到△ABG∽△BEH,利用相似三角形的对应边成比例,求出EH,BH的长,继而可求出CH的长,然后在Rt△CEH中,利用勾股定理求出CE的长.
解:过点E作EH⊥BC于点H,过点A作AG⊥BE于点G,
∴∠AGB=∠BHE=90°,
∵AE=AB,BE=BC=8,
∴BG=BE=×8=4,
∴,
∵矩形ABCD,
∴∠EBH+∠ABG=90°,∠ABG+∠BAG=90°,
∴∠EBH=∠BAG,
∴△ABG∽△BEH,
∴即,
解之:,
∴CH=BC-BH=;
在Rt△CEH中,
.
故答案为:.
科目:初中数学 来源: 题型:
【题目】(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.
(1)求面料和里料的单价;
(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.
①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)
②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD是边长为的正方形,矩形AEFG中AE=4,∠AFE=30°。将矩形AEFG绕点A顺时针旋转15°得到矩形AMNH(如图2),此时BD与MN相交于点O.
(1)求∠DOM的度数;
(2)图2中,求D、N两点间的距离;
(3)若将矩形AMNH绕点A再顺时针旋转15°得到矩形APQR,此时点B在矩形APQR的内部、外部还是边上?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax-4ax交x轴于点A,直线y= x+3与x轴交于点B,与y轴交于点C,与抛物线交于点D,E(点D在点E的右侧).
(1)求点A,B,C的坐标.
(2)当点D为BC的中点时,求a的值.
(3)若设抛物线的顶点为点M,点M关于直线BC的对称点为N, 当点N落在△BOC的内部时,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,说明理由;
(3)当t为何值时,△CPQ为等腰三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com