【题目】如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF.
(1)求证:DE是半圆的切线:
(2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论.
【答案】(1)证明见解析(2)四边形ODFA是菱形
【解析】试题分析:(1)连接OD,由等腰三角形的性质可得到∠OAD=∠ODA,由图形翻折变换的性质可得到∠CDA=∠EDA,再根据CD⊥AB即可得出结论;
(2)连接OF,可知OC=BC=OB=OD,由平行线的判定定理可得出OD∥AF,进而可得出△FAO是等边三角形,由等边三角形的性质可判断出四边形ODFA是平行四边形,由OA=OD即可得出结论.
试题解析:(1)如图,连接OD,则OA=OD,
∴∠OAD=∠ODA,
∵△AED由△ACD对折得到,
∴∠CDA=∠EDA,
又∵CD⊥AB,
∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D点在半圆O上,
∴DE是半圆的切线;
(2)四边形ODFA是菱形,
如图,连接OF,
∵CD⊥OB,
∴△OCD是直角三角形,
∴OC=BC=OB=OD,
在Rt△OCD中,∠ODC=30°,
∴∠DOC=60°,
∵∠DOC=∠OAD+∠ODA,
∴∠OAD=∠ODA=∠FAD=30°,
∴OD∥AF,∠FAO=60°,
又∵OF=OA,
∴△FAO是等边三角形,
∴OA=AF,
∴OD=AF,
∴四边形ODFA是平行四边形,
∵OA=OD,
∴四边形ODFA是菱形.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A、B、C的坐标分别为,,,点P,Q是边上的两个动点点P不与点C重合,以P,O,Q为顶点的三角形与全等,则满足条件的点P的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一张长方形纸片宽AB=DC=8 cm,长BC=AD=10 cm,∠B=∠C=∠D=∠BAD=90°.现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留π和根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.
(1)试证:前一个方程必有两个非负实数根;
(2)当k取何值时,上述两个方程有一个相同的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:∠AOD=150°,OB,OM,ON是∠AOD内的射线.
(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,
∠MON= °;
(2)OC也是∠AOD内的射线,如图2,若∠BOC=m°,OM平分∠AOC,ON平分∠BOD,
求∠MON的大小(用含m的式子表示);
(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC在∠AOD内部绕O点以每秒2°的速度逆时针旋转t秒,如图3,若3∠AOM=2∠DON时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1),
(1)请你画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各点坐标;
(2)在y轴上找一点P,使△APC的周长最短。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com