已知直线y=
x+4
与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于C。
(1)求直线BC的解析式
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当t=4秒时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
科目:初中数学 来源: 题型:
在三只乒乓球上,分别写有三个不同的正整数(用a、b、c表示),三只乒乓球除上面的数字不同外,其余均相同.将三只乒乓球放在一个盒子中,无放回的从中依次摸2只乒乓球,将球上面的数字相加求和.当和为偶数时,记为事件A;当和为奇数时,记为事件B.
(1) 设计一组a、b、c的值,使得事件A为必然发生的事件;
(2) 设计一组a、b、c的值,使得事件B发生的概率大于事件A发生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,
备选条件:AE=CF,BE=DF,∠AEB=∠CFD,
我选择添加的条件是 .证明:
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,□ABCD中,若AB=1,BC=2,则□ABCD为1阶准菱形.
(1)判断与推理:
①邻边长分别为2和3的平行四边形是 阶准菱形;
②小明为了剪去一个菱形,进行如下操作:如图2,把□ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABEF是菱形.
(2)操作、探究与计算:
①已知□ABCD是邻边长分别为1,a(a>1),且是3阶准菱形,请画出□ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知□ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r(r>0),则□ABCD是 阶准菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
单元检测后,学习小组长算出全组5位同学数学成绩的平均分为M,如果把M当成另一个
同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M: N为( )
A.
B.1 C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com