【题目】如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,),OC与⊙D交于点C,∠OCA=30°.求
(1)⊙D的半径;
(2)圆中阴影部分的面积(结果保留根号和π)
【答案】(1);(2)
【解析】
(1)连接AB,根据∠AOB=90°,得到AB为⊙D直径,∠ABO=∠C=30°,根据直角三角形中,30°角所对的直角边是斜边的一半可得,AB=2AO=2DA,利用勾股定理求得AB的值,进而求得⊙D的半径;
(2)S阴影=S半圆+S△AOB,即可解答.
(1)连接AB,
∵∠AOB=90°,∴AB为⊙D直径
∠ABO与∠C是同弧所对圆周角,
∴ ∠ABO=∠C=30°
∴AB=2AO=2DA,∵B点坐标为(0,), ∴OB=
在直角三角形AOB中,AB2=OA2+OB2,∴AB2=(AB)2+()2
∵AB>0,∴AB=,即⊙D的半径为
(2)解:由(1)可知,AB为⊙D直径,OA=
S阴影=S半圆+S△AOB
科目:初中数学 来源: 题型:
【题目】长城汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.
(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;
(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点P是直线BC上的一点,连接AP,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE.
(1)如图1,点P在线段CB的延长线上.
①请根据题意补全图形;
②用等式表示BP和CE的数量关系,并证明.
(2)若点P在射线BC上,直接写出CE,CP,CD三条线段的数量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴,垂足为B,将△ABO绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),则点A′的坐标是( )
A.(2,0) B.(2,﹣1) C.(﹣2,1) D.(﹣1,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AC=CD,若点E、F分别为边BC、CD上的两点,且∠EAF=∠CAD.
(1)求证:△ADF∽△ACE;
(2)求证:AE=EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(2,0).OC=3OB.
(1)求抛物线的解析式;
(2)若点P是线段AC下方抛物线上的动点,求三角形PAC面积的最大值.
(3)在(2)的条件下,△PAC的面积为S,其中S为整数的点P作“好点”,则存在多个“好点”,则所有“好点”的个数为
(4)在(2)的条件下,以PA为边向直线AC右上侧作正方形APHG,随着点P的运动,正方形的大小、位置也随之改变,当顶点H或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com