精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AC=CD,若点EF分别为边BCCD上的两点,且∠EAF=CAD

1)求证:△ADF∽△ACE

2)求证:AE=EF

【答案】1)证明见解析;(2)证明见解析.

【解析】

1)根据平行四边形的性质可得到∠BCA=CAB,由等边对等角可得到∠CAD=D,根据平行四边形的性质利用SAS可判定△BCA≌△DAC,由全等三角形的性质即可得到∠D=ACB,再根据相似三角形的判定得出即可;

2)由△ADF∽△ACE可得到对应边成比例,已知∠EAF=CAD从而可推出△AEF∽△ACD,已知AC=CD,根据对应成比例不难得到结论.

解:(1)∵AC=CD

∴∠D=CAD

∵平行四边形ABCD

ADBC

∴∠CAD=ACB

∴∠D=ACB

∵∠EAF=CAD

∴∠DAF=CAE

∴△ADF∽△ACE

2)∵△ADF∽△ACE

∵∠EAF=CAD

∴△AEF∽△ACD

又∵AC=CD

AE=EF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.

(1)求抛物线的函数表达式;

(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;

(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的的顶点为.

1)顶点的坐标为 .

2)横、纵坐标都是整数的点叫做整点.轴且

①点的坐标为

②过点轴的垂线,若直线与抛物线交于两点,该抛物线在之间的部分与线段所围成的区域(包括边界)恰有七个整点,结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于AB两点,B点坐标为(0),OC与⊙D交于点C,∠OCA30°.

1)⊙D的半径;

2)圆中阴影部分的面积(结果保留根号和π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2(2m1)xm240.

(1)m为何值时,方程有两个不相等的实数根?

(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线.

(2)过点E作EH⊥AB于点H,求证:CD=HF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BAD是由BEC在平面内绕点B旋转60°而得,且ABBC,BE=CE,连接DE.

(1)求证:BDE≌△BCE;

(2)试判断四边形ABED的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1S2S3S4,则S1S2S3S4等于(  )

A.1234B.2345C.1357D.3579

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂用天时间生产一款新型节能产品,每天生产的该产品被某网店以每件元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第天的生产成本(元/件)与(天)之间的关系如图所示,第天该产品的生产量(件)与(天)满足关系式

天,该厂生产该产品的利润是   元;

设第天该厂生产该产品的利润为元.

①求之间的函数关系式,并指出第几天的利润最大,最大利润是多少?

②在生产该产品的过程中,当天利润不低于元的共有多少天?

查看答案和解析>>

同步练习册答案