【题目】如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.
(1)求的值;
(2)若,求直线的解析式;
(3)若,其它条件不变,直接写出与的位置关系.
【答案】(1) ;(2) ;(3) BC∥AD.
【解析】
(1)将点A(-4 ,1)代入,求的值;
(2)作辅助线如下图,根据和CH=AE,点D的纵坐标,代入方程求出点D的坐标,假设直线的解析式,代入A、D两点即可;
(3)代入B(0,1),C(2,0)求出直线BC的解析式,再与直线AB的解析式作比较,得证BC∥AD.
(1) ∵反比例函数的图象经过点A(-4 ,1),
∴
(2) 如图,∵
∴
∴ DH=3
∵ CH=AE=1
∴CD=2
∴ 点D的纵坐标为﹣2,
把代入得:
∴ 点D的坐标是(2,﹣2)
设:,则
∴
∴ 直线AD的解析式是:
(3)由题(2)得
B(0,1),C(2,0)
设:,则
解得
∴
∵
∴BC∥AD
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
①△BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角的度数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣mx﹣m﹣1与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(0,﹣3).
(1)求点A、B的坐标;
(2)点D是抛物线上一点,且∠ACO+∠BCD=45°,求点D的坐标;
(3)将抛物线向上平移m个单位,交线段BC于点M,N,若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,点D、点E在BC边上,且.
(1)求证:△ABD∽△CBA.
(2)若△ACE∽△BCA,判定△ADE的形状,并说明理由;
(3)在(1)和(2)的条件下,若tan∠ADC=2,DE=6,请求出AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在和中,顶点是它们的公共顶点,,.
(特例感悟)(1)当顶点与顶点重合时(如图1),与相交于点,与相交于点,求证:四边形是菱形;
(探索论证)(2)如图2,当时,四边形是什么特殊四边形?试证明你的结论;
(拓展应用)(3)试探究:当等于多少度时,以点为顶点的四边形是矩形?请给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)
尝试:如图2,△ABC中,AC=BC,∠ACB=90°.
(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°
(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.
①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;
②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;
③应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,为坐标原点,的边垂直于轴、垂足为点,反比例函数的图象经过的中点、且与相交于点.经过、两点的一次函数解析式为,若点的坐标为,.且.
(1)求反比例函数的解析式;
(2)在直线上有一点,的面积等于.求满足条件的点的坐标;
(3)请观察图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.
(1)求一次函数的表达式;
(2)求△AOB的面积;
(3)写出不等式kx+b>﹣的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com