精英家教网 > 初中数学 > 题目详情
18.已知x-1=$\sqrt{2}$,求代数式(x+1)2+4(x+1)+4的值.

分析 直接利用完全平方公式将原式分解因式,进而将已知代入求出答案.

解答 解:∵x-1=$\sqrt{2}$,
∴x=1+$\sqrt{2}$,
∵(x+1)2+4(x+1)+4
=(x+1+2)2
=(x+3)2
∴原式=(1+$\sqrt{2}$+3)2
=16+2+8$\sqrt{2}$
=18+8$\sqrt{2}$.

点评 此题主要考查了因式分解的应用,正确分解因式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源:2017届山东省文慧学校九年级下学期第一次月考数学试卷(解析版) 题型:单选题

如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=( )

A. 3 B. 4 C. 4.8 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知等腰△ABC中,AB=AC,点D是AC上一动点,点E在BD的延长线上,且AB=AE,AF平分∠CAE,交DE于F,∠ABC=45°,且BD平分∠ABC,请你证明,BD=2FE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,AB∥DC,DC=CB,CE⊥AD,交AD的延长线于E,CF⊥AB垂足为F,∠DAB=∠B,求证:AC平分∠DAB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:
(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ca;
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;
(3)小明同学用2张边长为a的正方形,3张边长为b的正方形,5张边长分别为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?
(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,那么9(x+y+z)=2016.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是(  )
A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验,将整式方程的解代入最简公分母,若最简公分母的值不为0,则整式方程的解就是原分式方程的解,否则这个解不是原分式方程的解,即此时原方程无解.请你根据对这段话的理解,解决下列问题.
已知关于x的方程$\frac{m-1}{x-1}$-$\frac{x}{x-1}$=0无解,且关于x的方程x2-k=0的一个解是m,
(1)求m和k的值.
(2)求方程x2-k=0的另一个解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知三角形ABC是等边三角形,D是BC边上的中点,其中点E、F分别如图中说明,则下列图形中①、②、③、④四个区域面积相等的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.二次函数y=3x2+m2-1的图象经过原点,则m=-1或1.

查看答案和解析>>

同步练习册答案