精英家教网 > 初中数学 > 题目详情

【题目】“共和国勋章”是中华人民共和国的最高荣誉勋章.2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为ABCD)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上ABCD四个标号,然后背面朝上放置,搅匀后每个同学可从中随机抽取一张,记下标号后放回,老师要求每位同学根据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.

A. B. C. D.

【答案】.

【解析】

根据题意先列出表格,得出共有16种等可能的结果数,再利用概率公式求解可得.

解:所有可能的结果如下:

小华

小明

A

B

C

D

A

A,A

A,B

A,C

A,D

B

B,A

B,B

B,C

B,D

C

C,A

C,B

C,C

C,D

D

D,A

D,B

D,C

D,D

由表格可知,一共有16种结果,每种结果出现的可能性都相同,其中小明和小华抽到同一位院士的结果有4种,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+c中的yx的部分对应值如下表:

x

1

0

1

3

y

3

1

3

1

下列结论中:抛物线的开口向下;其图象的对称轴为x1x1时,函数值yx的增大而增大;方程ax2+bx+c0有一个根大于4ax12+bx1ax22+bx2,且x1x2,则x1+x23,其中正确的结论有(  )

A.①②③B.①②③④⑤C.①③⑤D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6BC=8,点O为对角线BD的中点,点E为边AD上一点,连接OE,将DOE沿OE翻折得到OEF,若OFAD于点G,则OE=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2bxc的顶点坐标为(29),与y轴交于点A05),与x轴交于点EB.

1)求二次函数yax2bxc的解析式.

2)过点AAC平行于x轴,交抛物线于点C,点P为抛物线上一点(点PAC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?求P坐标及最大面积是多少?

3)若点M在抛物线上,点N在其对称轴上,使得以AENM为顶点的四边形是平行四边形,直接写出M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程mx2-2x+1=0.

(1)若方程有两个实数根,求m的取值范围;

(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践探究几何元素之间的关系

问题情境:四边形ABCD中,点O是对角线AC的中点,点E是直线AC上的一个动点(点E与点COA都不重合),过点AC分别作直线BE的垂线,垂足分别为FG,连接OFOG.

1)初步探究:

如图1,已知四边形ABCD是正方形,且点E在线段OC上,求证

2)深入思考:请从下面AB两题中任选一题作答,我选择_______.

A.探究图1OFOG的数量关系并说明理由;

B.如图2,已知四边形ABCD为菱形,且点EAC的延长线上,其余条件不变,探究OFOG的数量关系并说明理由;

3)拓展延伸:请从下面AB两题中任选一题作答,我选择_______.

如图3,已知四边形ABCD为矩形,且.

A.E在直线AC上运动的过程中,若,则FG的长为________.

B.E在直线AC上运动的过程中,若,则FG的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点FDE的延长线上,∠BFE=90°,连接AF、CF,CFAB交于G.有以下结论:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2345.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.

1)用列表法或画树状图法,求小丽参赛的概率.

2)你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下面材料,并回答所提出的问题.

三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.

已知:如图,△ABC中,AD是角平分线.

求证:

证明:过CCEDA,交BA的延长线于E

∴∠1=∠E,∠2=∠3

AD是角平分线,

∴∠1=∠2

∴∠3=∠E

ACAE

又∵CEDA

.……

(1)上述证明过程中,步骤处的理由是_____

(2)用三角形内角平分线定理解答:已知,△ABC中,AD是角平分线,AB7cmAC4cmBC6cm,则BD的长为_____cm

查看答案和解析>>

同步练习册答案