【题目】如图,点O是直线AE上的一点,OC是∠AOD的平分线,∠BOD=∠AOD.
(1)若∠BOD=20°,求∠BOC的度数;
(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.
【答案】(1)10°;(2)180°﹣6n
【解析】
(1)根据∠BOD=∠AOD.∠BOD=20°,可求出∠AOD,进而求出答案;
(2)设∠BOD的度数,表示∠AOD,用含有n的代数式表示∠AOD,从而表示∠DOE.
解:(1)∵∠BOD=∠AOD.∠BOD=20°,
∴∠AOD=20°×3=60°,
∵OC是∠AOD的平分线,
∴∠AOC=∠COD=∠AOD=×60°=30°,
∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;
(2)设∠BOD=x,则∠AOD=3x,
有(1)得,∠BOC=∠COD﹣∠BOD,
即:n=x﹣x,解得:x=2n,
∴∠AOD=3∠BOD=6n,
∠EOD=180°﹣∠AOD=180°﹣6n,
科目:初中数学 来源: 题型:
【题目】综合与实践
已知,,,…都是不等于0的有理数,若,求的值.
解:当时,;当时,,所以参照以上解答,试探究以下问题:
(1)若,求的值
(2)若,则的值为__________;
(3)由(1)、(2)试猜想,共有__________个不同的值,在这些不同的值中,最大的值和最小的值的差等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=108°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN等于( )
A. 72°B. 54°C. 36°D. 18°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°
(1)若OC平分∠AOM,求∠AOD的度数.
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为( )
A.2(x+10)=10×4+6×2B.2(x+10)=10×3+6×2
C.2x+10=10×4+6×2D.2(x+10)=10×2+6×2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班对道德与法治,历史,地理三门程的选考情况进行调研,数据如下:
科目 | 道德与法治 | 历史 | 地理 |
选考人数(人) | 19 | 13 | 18 |
其中道德与法治,历史两门课程都选了的有3人,历史,地理两门课程都选了的有4人,该班至多有多少学生( )
A.41B.42C.43D.44
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;
晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.
(1)下面是小东证明该猜想的部分思路,请补充完整;
①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与______全等,判定它们全等的依据是______;
②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=______°;
(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com