精英家教网 > 初中数学 > 题目详情

【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60.经调查发 现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:

(1)yx之间的函数关系式;

(2)设商场每天获得的总利润为w(元),求wx之间的函数关系式;

(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?

【答案】(1);(2);(3)当售价定为50元时,商场每天获得总利润最大,最大利润是1800元.

【解析】

(1)用待定系数法求一次函数的解析式即可;(2)根据“总利润=每千克利润×销售量”即可得wx之间的函数关系式;(3)将所得函数解析式化为顶点式,根据二次函数性质即可解答

1)满足一次函数关系.

∴设的函数表达式为 .

代入中,得

解得

之间的函数表达式为.

(2)由题意,得.

之间的函数表达式为.

(3).

∴抛物线开口向下.

由题可知:

∴当时,有最大值,.

答:当售价定为50元时,商场每天获得总利润最大,最大利润是1800元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是本地区一种产品30天的销售图象,产品日销售量y(单位:件)与时间t(单位:天)的大致函数关系如图①,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )

A. 日销售量为150件的是第12天与第30天

B. 第10天销售一件产品的利润是15元

C. 从第1天到第20天这段时间内日销售利润将先增加再减少

D. 第18天的日销售利润是1225元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个口袋中有3个大小相同的小球,球面上分别写有数字123.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.

1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;

2)求两次摸出的球上的数字和为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,长方形的项点的坐标是.

1)直接写出点坐标(____________),点坐标(____________);

2)如图,D中点.连接,如果在第二象限内有一点,且四边形的面积是面积的倍,求满足条件的点的坐标;

3)如图,动点从点出发,以每钞个单位的速度沿线段运动,同时动点从点出发.以每秒个单位的連度沿线段运动,当到达点时,同时停止运动,运动时间是,在运动过程中.时,直接写出时间的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BAC=90°,直角∠EPF的顶点PBC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四边形AEPF,上述结论正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1是一个重要公式的几何解释.请你写出这个公式:

2)如图2,已知,且三点共线.

试证明

3)勾股定理是几何学中的明珠,千百年来,人们对它的证明趋之若骛,有资料表明,关于勾股定理的证明方法已有500余种.课本中介绍了比较有代表性的赵爽弦图.

伽菲尔德(Garfield1881年任美国第20届总统)利用图2证明了勾股定理(187641日,发表在《新英格兰教育日志》上),请你写出该证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a,b是一元二次方程x(x﹣2)=x﹣2的两根,且点A(﹣a,﹣b)是反比例函数图象上的一个点,若自点A向两坐标轴作垂线,两垂线与坐标轴构成的矩形的面积是(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是(  )

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF D. ∠A=∠EDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,ECD上一点,连接BE, ∠EBC=15°,将ΔEBC绕点C按顺时针方向旋转90°得到ΔFDC,连接EF,则∠EFD的度数为(

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

同步练习册答案