精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,过点DDE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.

(1)求证:四边形BFDE是矩形

(2)CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.

【答案】见解析

【解析】分析:(1)由平行四边形的性质和已知条件得出BE=DF,证明四边形BFDE为平行四边形,再由DEAB,即可得出结论;

(2)由矩形的性质和勾股定理求出BC,得出AD=BC=DF,证出∠DAF=DFA,再由平行线的性质即可得出结论.

详解:证明:(1)∵四边形ABCD是平行四边形,

ABCD,AB=CD.

CF=AE,

BE=DF.∴四边形BFDE为平行四边形.

DEAB,

∴∠DEB=90°

.∴四边形BFDE是矩形.

(2)∵四边形BFDE是矩形,

∴∠BFD=90°.

∴∠BFC=90°

.RtBFC中,由勾股定理得BC==10.

AD=BC=10.

又∵DF=10,

AD=DF

.∴∠DAF=DFA.

ABCD,

∴∠DFA=FAB.

∴∠DAF=FAB.

AF是∠DAB的平分线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为6cm的等边三角形.若点P1cm/s的速度从点B出发,同时点Q1.5cm/s的速度从点C出发,都按逆时针方向沿△ABC的边运动,运动时间为6秒.

(1)试求出运动到多少秒时,直线PQ△ABC的某边平行;

(2)当运动到t1秒时,P、Q对应的点为P1、Q1,当运动到t2秒时(t1≠t2),P、Q对应的点为P2、Q2,试问:△P1CQ1△P2CQ2能否全等?若能,求出t1、t2的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】班派出名同学参加数学竞赛,老师以分为基准,把分数超过分的部分记为正数,不足部分记为负数.评分记录如下:

名同学中最高分和最低分各是多少?

超过基准分的和低于基准分的各有多少人?

这十二名同学的平均成绩是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在纸面上有一数轴(如图),折叠纸面.

(1)若1表示的点与-1表示的点重合,则-2表示的点与数 表示的点重合;

(2)若-1表示的点与5表示的点重合,回答以下问题:

① 7表示的点与数 表示的点重合;

若数轴上AB两点之间的距离为11(AB的左侧),且AB两点经折叠后

重合, AB两点表示的数各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有三个点A、B、C,完成系列问题:

(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.

(2)在数轴上找到点E,使点EA、C两点的距离相等.并在数轴上标出点E表示的数.

(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示EFGH分别是四边形ABCD的边ABBCCDAD的中点

(1)当四边形ABCD是矩形时四边形EFGH是_________请说明理由;

(2)当四边形ABCD满足什么条件时四边形EFGH为正方形?并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD中,点EF分别是边ABCD的中点,(1)求证:CFB≌△AED

(2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?

(2)与标准重量比较,20筐白菜总计超过或不足多少千克?

(3)若白菜每千克售价26元,则出售这20筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为(  )
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

同步练习册答案