| A. | 16 | B. | 12 | C. | 8 | D. | 4 |
分析 过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.
解答
解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,
在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
∵∠DAF+∠ADF=90°,
∴∠BAE=∠ADF,
在△ABE和△DAF中,
∵$\left\{\begin{array}{l}∠BAE=∠ADF\\∠AEB=∠DFA\\ AB=AD\end{array}\right.$,
∴△ABE≌△DAF(AAS),
∴AF=BE,DF=AE,
∵正方形的面积为5,B(1,3),
∴BE=1,AE=2
∴OF=OE+AE+AF=3+2+1=6,
∴点D的坐标为(2,6),
∵顶点D在反比例函数y=$\frac{k}{x}$(x>0)的图象上,
∴k=xy=2×6=12.
故选B.
点评 本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$•a=1 | B. | |a-2|+|a+1|=5 | C. | -a3+a+(-a)2=10 | D. | $\frac{1}{a}$-$\frac{1}{{a}^{2}}$=$\frac{1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a≥0 | B. | a≤1 | C. | 0≤a≤1 | D. | a>1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{5}{12}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{12}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com