【题目】如图,在平面直角坐标系中,△ABC的顶点 在 轴负半轴上,顶点在轴正半轴上,顶点 在第一象限,线段 , 的长是一元二次方程 的两根,,.
(1)直接写出点的坐标 点 C 的坐标 ;
(2)若反比例函数的图象经过点,求 的值;
(3)如图过点作 轴于点 ;在轴上是否存在点 ,使以,, 为顶点的三角形与以,,为顶点的三角形相似?若存在,直接写出满足条件的点的坐标;若不存在,请说明理由.
【答案】(1),.(2);(3)存在, 或 或 或 或
【解析】
(1)解一元二次方程x2-12x+36=0,求出两根即可得到点A,C的坐标;
(2)过点B作BE⊥AC,垂足为E,由∠BAC=45°可知AE=BE,设BE=x,用勾股定理可得CE=,根据AE+CE=OA+OC,解方程求出BE,再由AE-OA=OE,即可求出点B的坐标,然后求出k的值;
(3)分类讨论,根据相似三角形对应边成比例求出点P的坐标.
(1)解一元二次方程 ,
解得:,
所以 ,
所以 ,;
(2) 如图,过点 作 ,垂足为 ,
∵ ,
∴ ,
设,
∵ =12,
∴ EC=12-x,
在RtΔBEC中,,
∴
整理得:,
解得:(不合题意舍去),,
∴ ,,
∴ ,
把代入,得 ;
(3)存在.
如图2,
若点P在OD上,若△PDB∽△AOP,
则,即,
解得:OP=2或OP=6,
∴P(0,2)或P(0,6);
如图3,
若点P在OD上方,△PDB∽△AOP,
则,即,
解得:OP=12,
∴P(0,12);
如图4,
若点P在OD上方,△BDP∽△AOP,
则,即,
解得:OP=4+2或OP=4-2(不合题意舍去),
∴P(0,4+2);
如图5,
若点P在y轴负半轴,△PDB∽△AOP,
则,即,
解得:OP=-4+2或-4-2(不合题意舍去),
则P点坐标为(0,4-2)
故点 的坐标为: 或 或 或 或
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:
①abc>0;②3a+c<0;③a+b≥am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.
其中正确的有( )个.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:已知平行四边形的面积为,是所在直线上一点.
如图:当点与重合时,________;
如图,当点与与均不重合时,________;
如图,当点在(或)的延长线时,________.
拓展推广:如图,平行四边形的面积为,、分别为、延长线上两点,连接、、、,求出图中阴影部分的面积,并说明理由.
实践应用:如图是一平行四边形绿地,、分别平行于、,它们相交于点,,,,,现进行绿地改造,在绿地内部作一个三角形区域(连接、、,图中阴影部分)种植不同的花草,求出三角形区域的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BD是AC边上的中线,AE⊥BC,垂足为点E,交BD于F,cos∠ABC=,AB=13.
(1)求AE的长;
(2)求tan∠DBC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.
(1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是 人;
(2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85
①“95,100,82,90,89,90,90,85”这组数据的众数是 ,中位数是 .
②小聪同学的成绩是92分,他的成绩如何?
③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知长方形ABCD可以按图示方式分成九部分,在a,b变化的过程中,下面说法正确的有( )
①图中存在三部分的周长之和恰好等于长方形ABCD的周长
②长方形ABCD的长宽之比可能为2
③当长方形ABCD为正方形时,九部分都为正方形
④当长方形ABCD的周长为60时,它的面积可能为100
A.①②B.①③C.②③④D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com