| 售价(元/件) | 100 | 110 | 120 | 130 | … |
| 月销量(件) | 200 | 180 | 160 | 140 | … |
分析 (1)根据利润=售价-进价求出利润,即可得到销售该运动服每件的利润;
(2)运用待定系数法求出月销量;
(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.
解答 解:(1)销售该运动服每件的利润是(x-60)元;
故答案为:x-60;
(2)设月销量y与x的关系式为y=kx+b,
由题意得,$\left\{\begin{array}{l}{100k+b=200}\\{110k+b=180}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{k=-2}\\{b=400}\end{array}\right.$,
∴y=-2x+400;
(3)由题意得,W=(x-60)(-2x+400)
=-2x2+520x-24000
=-2(x-130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元.
点评 本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com