精英家教网 > 初中数学 > 题目详情
9.已知:如图,在△ABC中,AC=BC,∠ACB=90°,在BA上任取一点P,PE⊥BC于E,PF⊥AC于F,M是AB的中点.证明:
(1)ME=MF;
(2)PF+BE=AC.

分析 (1)欲证明MF=ME,只要证明△AFM≌△CEM即可.
(2)欲证明PF+BE=AC,因为AC=AF+CF,所以只要证明PF=AF,EB=FC,利用矩形的性质.等腰三角形的性质即可证明.

解答 (1)证明:连接MC.
∵PE⊥BC,PF⊥AC,
∴∠PEC=∠PFC=∠=90°,
∴四边形PECF是矩形,
∴PF=EC
∵CA=CB,∠=90°,AM=MB,
∴CM=AM=MB,∠A=∠B=∠APF=∠ACM=∠MCB=45°,
∴AF=PF,
在△AFM和△CEM中,
$\left\{\begin{array}{l}{AM=CM}\\{∠A=∠MCB}\\{AF=CE}\end{array}\right.$,
∴△AFM≌△CEM,
∴FM=ME.
(2)∵四边形PECF是矩形,
∴PE=CF,
∵∠B=45°,∠PEB=90°,
∴∠B=∠EPB=45°,
∴PE=EB,
∵PF=AF,
∴PF+BE=AF+FC=AC.

点评 本题考查全等三角形的判定和性质、等腰三角形的性质、矩形的判定和性质等知识,添加辅助线构造全等三角形是解决问题的关键,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,抛物线y=x2-2mx-3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,
(1)用m的代数式表示:点C坐标为(0,-3m2),AB的长度为4m;
(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM交抛物线于点N,
①求$\frac{AM}{AN}$的值;
②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.一次知识竞赛共有25道题,规定答对一道题得4分,答错或不达一道题得-1分,得80分或80分以上为优胜奖,如果小丽想在这次竞赛中获得优胜奖,那么她至少要答对多少道题?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2,l1于点D,E(点A,E位于点B的两侧),满足BP=BE,连接AP,CE.
(1)求证:△ABP≌△CBE;
(2)连接BD,BD与AP相交于点F.当$\frac{BC}{BP}$=2时,求证:AP⊥BD;
(3)在(2)的条件下,延长AP交CE于点G,连接BG,求∠AGB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:
(1)∠OAE=∠OBE;
(2)AE=BE+$\sqrt{2}$OE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,四边形ABCD是正方形,点E在BC上,过D点作DG⊥DE交BA的延长线于G.
(1)求证:DE=DG;
(2)以线段DE、DG为边作出正方形DEFG,点K在AB上且BK=AG,连接KF,请画出图形,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想;
(3)当$\frac{CE}{CB}=\frac{m}{n}$时,请直接写出$\frac{{S}_{正方形ABCD}}{{S}_{正方形DEFG}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.经过两点可以画无数条直线
B.两条射线组成的图形叫做角
C.正多边形的各边都相等,各角都相等
D.两个锐角的和一定大于直角

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(-1,7),则点B(-4,-1)的对应点D的坐标为(  )
A.(2,9)B.(5,3)C.(-4,2)D.(-9,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.请在下列证明过程中,标注恰当的理由.如图,在△ABC中,∠ABC的平分线BE与∠ACD的平分线CE相交于点E.
证明:因为BE是∠ABC的平分线,CE是∠ACD的平分线,所以∠ABC=2∠1,∠ACD=2∠2.(角平分线的定义)
因为∠ACD是△ABC的一个外角,
所以∠ACD=∠A+∠ABC.(三角形的一个外角等于与它不相邻的两个内角的和)
所以∠A=∠ACD-∠ABC.(等式的性质)
所以∠A=2∠2-2∠1.(等量代换)
=2(∠2-∠1)
因为∠2是△BEC的一个外角,
所以∠2=∠1+∠E.(三角形的一个外角等于与它不相邻的两个内角的和)
所以∠E=∠2-∠1.(等式的性质)
所以∠A=2∠E.(等量代换)

查看答案和解析>>

同步练习册答案