【题目】古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.
(1)求证:CD是⊙O的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
【答案】(1)见解析;(2),解析
【解析】
本题考查了切线的判定与性质及相似三角形的判定与性质.(1)连接OD,DB,由已知可得DE垂直平分OB,于是DB=DO,而OB=OD,所以DB=DO=OB,即△ODB是等边三角形,于是∠BDO=60°,再由等腰三角形的性质及三角形的外角性质可得∠CDB=30°,从而可得∠ODC=90°,所以OD⊥CD,所以CD是⊙O的切线;(2)连接OP,由已知条件得OP=OB=BC=2OE,再利用“两组边成比例,夹角相等”证明△OEP∽△OPC,最后由相似三角形的对应边成比例得到结论.
解:(1)如答图,连接OD,DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO.∵DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°.∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴OD⊥CD,∴CD是⊙O的切线;
(2)这个确定的值是.
证明:如答图,连接OP,∵OP=OB=BC=2OE,∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=m与y轴交于点C,与x轴交于点A和点B(其中点A在y轴左侧,点B在y轴右侧).
(1)若抛物线y=m的对称轴为直线x=1,求抛物线的解析式;
(2)如图1,∠ACB=90°,点P是抛物线y=m上的一点,若S△BCP=,求点P的坐标;
(3)如图2,过点A作AD∥BC交抛物线于点D,若点D的纵坐标为﹣m,求直线AD的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠CAB=120°,AB=AC=3,点E是三角形ABC 内一点,且满足则点E 在运动过程中所形成的图形的长为 ( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】广州融创乐园是国内首个以南越文化、岭南风格为主题的游乐园,自2019年6月开园以来受到了国内外游客的热捧.某旅游团组织一批游客游玩了乐园内的四个网红项目,“A.双龙飞舞”、“B.飞跃广东”、“C.云霄塔”、“D.怒海狂涛”,并进行了“我最喜欢的一个项目”的投票评选活动,投票结果绘制成以下两幅尚未完整的统计图.请你根据图中提供的信息,解答下列问题:
(1)参与投票的游客总人数为 人;
(2)扇形统计图中B所对的圆心角度数为 度,并补全条形统计图;
(3)从投票给“双龙飞舞“的3名男生和1名女生中随机抽取2名了解情况,请你用列举法求恰好抽到1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )
A.点B坐标为(5,4)B.AB=ADC.a=D.OCOD=16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.
(1)求证:PC是⊙O的切线;
(2)求证:CDDE=2ODPD;
(3)若AB=8,CDDE=15,求PA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点C为线段上一点,以为斜边作等腰,连接,在外侧,以为斜边作等腰,连接.
(1)如图1,当时:
①求证:;
②判断线段与的数量关系,并证明;
(2)如图2,当时,与的数量关系是否保持不变?
对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:
想法1:尝试将点D为旋转中心,过点D作线段垂线,交延长线于点G,连接;通过证明解决以上问题;
想法2:尝试将点D为旋转中心,过点D作线段垂线,垂足为点G,连接.通过证明解决以上问题;
想法3:尝试利用四点共圆,过点D作垂线段,连接,通过证明D、F、B、E四点共圆,利用圆的相关知识解决以上问题.
请你参考上面的想法,证明(一种方法即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一大、一小两个等腰直角三角形拼在一起,,连接.
(1)如图1,若三点在同一条直线上,则与的关系是 ;
(2)如图2,若三点不在同一条直线上,与相交于点,连接,猜想之间的数量关系,并给予证明;
(3)如图3,在(2)的条件下作的中点,连接,直接写出与之间的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com