精英家教网 > 初中数学 > 题目详情
15.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是(  )
A.y=x2-1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+17

分析 根据图象左移加,右移减,图象上移加,下移减,可得答案.

解答 解:A、y=x2-1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A正确;
B、y=x2+6x+5=(x+3)2-4,无法经两次简单变换得到y=x2+1,故B错误;
C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2-2)2=x2,再向上平移1个单位得到y=x2+1,故C正确;
D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4-2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确.
故选:B.

点评 本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,抛物线y=$\frac{1}{4}$x2-$\frac{3}{2}$x-4与x轴交于点A和点B(点B在点A的左侧),与轴交于点C,⊙O′是△ABC的外接圆,AB是⊙O′的直径,过点C作⊙O′的切线与x轴交于点F,过点A作AD⊥CF于点D.
(1)求A,B,C三点的坐标;
(2)试判断抛物线的顶点E是否在直线CD上,并说明理由;
(3)在抛物线上是否存在一点P,使得S△ACP=S△ACO?若存在,直接写出所有满足条件的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).
(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;
(2)根据图象,写出你发现的一条结论;
(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,
175,173,167,165,166.
(1)求这10名男生的平均身高和上面这组数据的中位数;
(2)估计该校初三年级男生身高高于170cm的人数;
(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{2-x≥3}\\{\frac{3}{2}x+1>x-\frac{3}{2}}\end{array}\right.$的解集在数轴上表示正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;
(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为$\widehat{BC}$的中点,且∠DCF=∠P,求证:$\frac{BD}{PD}$=$\frac{FD}{ED}$=$\frac{CD}{AD}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.

查看答案和解析>>

同步练习册答案