精英家教网 > 初中数学 > 题目详情
18.已知三角形的周长为15.求三角形的最长边范围和最短边范围.

分析 根据题意在△ABC中,不妨设a≤b≤c(最大边为c),根据三角形的三边关系可得a+b>c,进而可得a+b+c>2c,再根据周长为15可得15>2c,然后根据c≥a且c≥b可得2c≥a+b,进而可得3c≥a+b+c,然后可得c的范围;求最短边的范围,a不定要大于零,再根据a≤c,a≤b,可得2a≤c+b,进而可得3a≤a+c+b,进而可得a≤5,从而确定答案.

解答 解:在△ABC中,不妨设a≤b≤c,
∵a+b>c,
∴a+b+c>2c,即15>2c,
∴c<7.5,
∵c≥a且c≥b,
2c≥a+b,
∴3c≥a+b+c,即3c≥15,
∴c≥5,
∴最长边c的取值范围为:5≤c<7.5,
∵a≤c,a≤b,
∴2a≤c+b,
∴3a≤a+c+b,
∴3a≤15,
∴a≤5,
∴0<a≤5.

点评 本题主要考查了三角形三边关系和三角形的周长计算,解题的关键是根据三角形三边关系和周长,列出关于三角形的最大边和三角形的周长之间的不等式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.计算y=-4时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程
(1)x2-2x-2=0;   
(2)(x-3)2+4x(x-3)=0.
(3)(x-3)(x+4)=8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.-3$\sqrt{3}$-2cos30°-$\sqrt{12}$-2-2+(3-π)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,∠AOB=90°,∠BOC=2∠BOD,OD平分∠AOC,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如果$\frac{|a-|a||}{a}$表示一个整数,试求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.若x2+y2-4x+2y+5=0,求($\frac{x}{2}}$)2010+y2010的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)$\frac{2-x}{3+x}$=$\frac{1}{2}$+$\frac{1}{x+3}$                  
(2)$\frac{5m-4}{2m-4}$=$\frac{2m+5}{3m-6}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列命题是假命题是有(  )
①若a2=b2,则a=b;
②若a为整数,则a3-a能被6整除;
③若a,b是有理数,则|a+b|=|a|+|b|;
④如果∠A=∠B,那么∠A与∠B是对顶角.
A.﹒1个B.﹒2个C.﹒3个D.﹒4个

查看答案和解析>>

同步练习册答案