16£®Å×ÎïÏߵĶ¥µãʽΪy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£¬ÏòÉÏÆ½ÒÆk£¨k£¾0£©¸öµ¥Î»ºó½âÎöʽΪy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$+k£¨a¡Ù0£©£¬ÏòÏÂÆ½ÒÆk£¨k£¾0£©¸öµ¥Î»ºó£¬½âÎöʽΪy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$-k£¨a¡Ù0£©£¬Ïò×óÆ½ÒÆh£¨h£¾0£©¸öµ¥Î»ºó£¬½âÎöʽΪy=a£¨x+$\frac{b}{2a}$+h£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£¬ÏòÓÒÆ½ÒÆh£¨h£¾0£©¸öµ¥Î»ºó£¬½âÎöʽΪy=a£¨x+$\frac{b}{2a}$-h£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£»¹ØÓÚxÖá¶Ô³ÆµÄ½âÎöʽΪy=-ax2-bx-c£¬¹ØÓÚyÖá¶Ô³ÆµÄ½âÎöʽΪy=ax2-bx+c£¬¹ØÓÚÔ­µã¶Ô³ÆµÄ½âÎöʽΪy=-ax2+bx-c£®

·ÖÎö Å×ÎïÏß¶¥µãʽΪy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£¬¸ù¾Ý¡°×ó¼ÓÓÒ¼õ£¬ÉϼÓϼõ¡±µÄ¹æÂɵõ½Æ½ÒƺóÅ×ÎïÏߵĽâÎöʽ£»
¹ØÓÚxÖá¶Ô³ÆµÄµãµÄ×ø±êµÄÌØÕ÷£ººá×ø±ê²»±ä£¬×Ý×ø±ê»¥ÎªÏà·´Êý£»
¹ØÓÚyÖá¶Ô³ÆµÄµãµÄ×ø±êÌØÕ÷£º×Ý×ø±ê²»±ä£¬ºá×ø±ê»¥ÎªÏà·´Êý£»
¹ØÓÚÔ­µã¶Ô³ÆµÄµãµÄ×ø±êÌØÕ÷£ººá¡¢×Ý×ø±ê¾ù»¥ÎªÏà·´Êý£®

½â´ð ½â£ºÅ×ÎïÏߵĽâÎöʽΪ£ºy=ax2+bx+c=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£¬Ôò¶¥µã×ø±êΪ£¨-$\frac{b}{2a}$£¬$\frac{4ac-{b}^{2}}{4a}$£©£®
ÔòÏòÉÏÆ½ÒÆk£¨k£¾0£©¸öµ¥Î»ºóµÄ¶¥µã×ø±êΪ£º£¨-$\frac{b}{2a}$£¬$\frac{4ac-{b}^{2}}{4a}$+k£©£¬ËùÒÔÆ½ÒƺóµÄ½âÎöʽΪ£ºy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$+k£¨a¡Ù0£©£»
ÏòÏÂÆ½ÒÆk£¨k£¾0£©¸öµ¥Î»ºóµÄ¶¥µã×ø±êΪ£º£¨-$\frac{b}{2a}$£¬$\frac{4ac-{b}^{2}}{4a}$-k£©£¬ËùÒÔÆ½ÒƺóµÄ½âÎöʽΪ£ºy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$-k£¨a¡Ù0£©£»
Ïò×óÆ½ÒÆh£¨h£¾0£©¸öµ¥Î»ºó£¬µÄ¶¥µã×ø±êΪ£º£¨-$\frac{b}{2a}$-h£¬$\frac{4ac-{b}^{2}}{4a}$£©£¬ËùÒÔÆ½ÒƺóµÄ½âÎöʽΪ£ºy=a£¨x+$\frac{b}{2a}$+h£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£»
ÏòÓÒÆ½ÒÆh£¨h£¾0£©¸öµ¥Î»ºó£¬µÄ¶¥µã×ø±êΪ£º£¨-$\frac{b}{2a}$+h£¬$\frac{4ac-{b}^{2}}{4a}$£©£¬ËùÒÔÆ½ÒƺóµÄ½âÎöʽΪ£ºy=a£¨x+$\frac{b}{2a}$-h£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£»
¹ØÓÚxÖá¶Ô³ÆµÄ½âÎöʽΪ£ºy=-£¨ax2+bx+c£©=-ax2-bx-c£»
¹ØÓÚyÖá¶Ô³ÆµÄ½âÎöʽΪ£ºy=ax2-bx+c£»
¹ØÓÚÔ­µã¶Ô³ÆµÄ½âÎöʽΪ£ºy=-ax2+bx-c£»
¹Ê´ð°¸ÊÇ£ºy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£»y=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$+k£¨a¡Ù0£©£»y=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$-k£¨a¡Ù0£©£»y=a£¨x+$\frac{b}{2a}$+h£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£»y=a£¨x+$\frac{b}{2a}$-h£©2+$\frac{4ac-{b}^{2}}{4a}$£¨a¡Ù0£©£»y=-ax2-bx-c£»y=ax2-bx+c£»y=-ax2+bx-c£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýͼÏóÓ뼸ºÎ±ä»»£®ÓÃÆ½ÒƹæÂÉ¡°×ó¼ÓÓÒ¼õ£¬ÉϼÓϼõ¡±Ö±½Ó´úÈ뺯Êý½âÎöʽÇóµÃÆ½ÒÆºóµÄº¯Êý½âÎöʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¾ÝijÊгµ¹Ü²¿ÃÅͳ¼Æ£¬2008Äêµ×È«ÊÐÆû³µÓµÓÐÁ¿Îª150ÍòÁ¾£¬¶ø½ØÖ¹µ½2010Äêµ×È«ÊÐµÄÆû³µÓµÓÐÁ¿ÒÑ´ï216ÍòÁ¾£¬¼Ù¶¨Æû³µÓµÓÐÁ¿ÄêÆ½¾ùÔö³¤Âʱ£³Ö²»±ä£¬ÔòÿÄêµÄƽ¾ùÔö³¤ÂÊΪ20%£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®½â·½³Ì×é$\left\{\begin{array}{l}{5x+6y+2z=80}\\{4x-3y+z=16}\\{3x-2y+6z=92}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®»¯¼ò£º
£¨1£©15£¨a-b£©3[-6£¨a-b£©q+5]£¨b-a£©2
£¨2£©£¨a-b£©£¨b-a£©4£¨b-a£©p+q+1»¯³É£¨a-b£©pµÄÐÎʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Çóº¯ÊýµÄ×î´óÖµ $\left\{\begin{array}{l}{S=-{t}^{2}+6t}&{£¨0£¼t¡Ü2£©}\\{S=-\frac{3}{4}{t}^{2}+4t+3}&{£¨2£¼t¡Ü3£©}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ1£¬Õý·½ÐÎABCDÖУ¬¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬µãPΪBOÉÏÒ»µã£¬PE¡ÍPA·Ö±ð½»ABÓÚF£¬½»CBµÄÑÓ³¤ÏßÓÚEµã£®
£¨1£©ÇóÖ¤£ºPA=PE£»
£¨2£©Èçͼ2£¬M¡¢N·Ö±ðΪAE¡¢BCµÄÖе㣬Á¬½ÓMN¡¢DE£¬½»ÓÚµãQ£¬ÊÔÅжÏQNºÍQEµÄÊýÁ¿¹ØÏµ²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÔÚͼ1ÖУ¬ÈôµãFΪPEµÄÖе㣬Ôòtan¡ÏAPDµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚÖ±½Ç¡÷ABCÖУ¬AC=5£¬BC=12£¬ÔòAB±ßµÄ³¤ÊÇ£¨¡¡¡¡£©
A£®13B£®$\sqrt{119}$C£®13»ò$\sqrt{119}$D£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2+ax+a-2=0
£¨1£©ÇóÖ¤£º²»ÂÛaÈ¡ºÎʵÊý£¬¸Ã·½³Ì¶¼ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»
£¨2£©Èô¸Ã·½³ÌµÄÒ»¸ö¸ùΪ1£¬ÇóaµÄÖµ¼°¸Ã·½³ÌµÄÁíÒ»¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬°ÑÕý·½ÐÎABCDÈÆ×ŵãA£¬°´Ë³Ê±Õë·½ÏòÐýתµÃµ½Õý·½ÐÎAEFG£¬±ßFGÓëBC½»ÓÚµãH£®ÇóÖ¤£ºHC=HF£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸