阅读材料:
我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)﹣(4+2﹣1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
尝试应用:
(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是C.
A.﹣6(a﹣b)2 B.6(a﹣b)2 C.﹣2(a﹣b)2 D.2(a﹣b)2
(2)已知x2+2y=5,求3x2+6y﹣21的值;
拓广探索:
(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.
【考点】代数式求值.
【专题】计算题;整体思想.
【分析】(1)把(a﹣b)看做一个整体,合并即可得到结果;
(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;
(3)原式去括号整理后,将已知等式代入计算即可求出值.
【解答】解:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是﹣2(a﹣b)2,
故选:C;
(2)∵x2+2y=5,
∴原式=3(x2+2y)﹣21=15﹣21=﹣6;
(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,
∴原式=a﹣c+2b﹣d﹣2b+c=a﹣d=a﹣2b+2b﹣c+c﹣d=(a﹣2b)+(2b﹣c)+(c﹣d)=3﹣5+10=8.
【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:
一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:
(1)甲、乙两组单独工作一天,商店应各付多少元?
(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店此付费用较少?
(3)若装修完后,商店每天可盈利200元,你认为如何安排施工有利用商店经营?说说你的理由。(可以直接用(1)(2)中的已知条件)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,D、E分别为△ABC的边AB、AC上的点,△ACD与△BCD的周长相等,△ABE与△CBE的周长相等,记△ABC的面积为S.若∠ACB=90°,则AD•CE与S的大小关系为( )
A.S=AD•CE B.S>AD•CE C.S<AD•CE D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
已知(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,则方框内的式子为( )
A.5b+3ab B.﹣5b+3ab C.5b﹣3ab D.﹣5b﹣3ab
查看答案和解析>>
科目:初中数学 来源: 题型:
在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为 人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com