【题目】将证明过程补充完整.
如图,DE∥AB,FG⊥AC,∠1=∠3,求证:BD⊥AC.
证明:∵DE∥AB(已知),
∴∠1=_______(_______)
∵∠1=∠3(已知),
∴∠3=_______(等量代换),
∴FG∥BD(_______),
∴∠ADB=∠AFG(_______)
∵FG⊥AC(已知),
∴∠AFG=90°(垂直的定义),
∴∠ADB=90°(_______),
∴BD⊥AC(_______)
【答案】∠2、两直线平行内错角相等、∠2、同位角相等两直线平行、两直线平行同位角相等、等量代换、垂直的定义.
【解析】
根据两条直线平行,内错角相等可推得∠1=∠2;利用等量代换,可得∠3=∠2;同位角相等两条直线平行,可得FG∥BD;两直线平行同位角相等,可得∠ADB=∠AFG;再利用垂直的定义和等量代换得BD⊥AC.
∵DE∥AB(已知),
∴∠1=∠2(两直线平行内错角相等)
∵∠1=∠3(已知),
∴∠3=∠2(等量代换),
∴FG∥BD(同位角相等两直线平行),
∴∠ADB=∠AFG(两直线平行同位角相等)
∵FG⊥AC(已知),
∴∠AFG=90°(垂直的定义),
∴∠ADB=90°(等量代换),
∴BD⊥AC(垂直的定义).
故答案:∠2、两直线平行内错角相等、∠2、同位角相等两直线平行、两直线平行同位角相等、等量代换、垂直的定义.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD的纸片,长AD=10厘米,宽AB=8厘米,AD沿点A对折,点D正好落在BC上的点F处,AE是折痕.
(1)图中有全等的三角形吗?如果有,请直接写出来;
(2)求线段EF的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B两点的坐标分别为(﹣2,2)、(1,8).
(1)求三角形ABO的面积;
(2)若y轴上有一点M,且三角形MAB的面积为10,求M点的坐标;
(3)如图,把直线AB以每秒2个单位的速度向右平移,问经过多少秒后,该直线与y轴交于点(0,﹣2)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数c为常数的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连结BC.
求该二次函数的解析式及点M的坐标.
过该二次函数图象上一点P作y轴的平行线,交一边于点Q,是否存在点P,使得以点P、Q、C、O为顶点的四边形为平行四边形,若存在,求出P点坐标;若不存在,说明理由.
点N是射线CA上的动点,若点M、C、N所构成的三角形与相似,请直接写出所有点N的坐标直接写出结果,不必写解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,两条交叉的公路上分别有A,B两个车站,要在这两条公路之间的S区域内修一个货运仓库,使它到两条公路的距离相等,且又要到两个车站的距离相等,请你在图中画出这个货运仓库P的位置.(不写已知、求作、作法,只保留作图痕迹)
(2)如图,在正方形网格中,A,B,C均在格点上,在所给的平面直角坐标系中解答下列问题:
①分别写出B,C两点的坐标,及点B关于轴对称的点B′和点C关于轴对称的点C′的坐标;
②在图中画出一个以A,B,C,D为顶点的四边形,使其为轴对称图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动一个单位,那么第2018秒时,点所在位置的坐标是( ).
A. (6,44)B. (38,44)C. (44,38)D. (44,6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某工艺厂设计了一款成本为10元件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价元件 | 20 | 30 | 40 | 50 | ||
每天销售量件 | 500 | 400 | 300 | 200 |
猜一猜y是x的什么函数关系?并求出此函数的关系式;
若用元表示工艺厂试销该工艺品每天获得的利润,试求元与/span>元件之间的函数关系式.
若该工艺品的每天的总成本不能超过2500元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com