【题目】随着夏季的来临,襄阳夜市大虾市场逐渐火爆,大虾供不应求.大虾养殖户莫小贝为了照顾更多的客户制定了如下销售方案:购买数量不大于50斤的部分,46元/斤;购买数量大于50斤但不大于m(120≤m≤200)斤的部分,60元/斤;购买数量大于m斤的部分,80元/斤.
(1)若胡胖子在莫小贝处购得大虾80斤,则他应付多少元钱?
(2)若胡胖子在莫小贝处购得大虾x斤,应付的钱数为y元,请列出y关于x的函数解析式;
(3)若胡胖子在莫小贝处购得大虾160斤,应付钱数y元的取值范围是8000≤y≤9000,试求m的取值范围.
【答案】(1)他应付4100元;(2);(3)155≤m<160.
【解析】
(1)根据题意列式计算;
(2)分三种情况:当x≤50时,当50<x≤m(120≤m≤200)时,当x>m时;分别列出三种情况下的函数解析式即可;
(3)当x=160时,由(2)知分两种情况讨论:当120≤m<160时和当m≥160时,列出关于m的不等式组,解之即可.
解:(1)由题意知:
若胡胖子在莫小贝处购得大虾80斤,则他应付的钱数为:50×46+(80﹣50)×60=4100(元)
答:若胡胖子在莫小贝处购得大虾80斤,则他应付4100元钱.
(2)当x≤50时,y=46x;
当50<x≤m(120≤m≤200)时,y=50×46+(x﹣50)×60=60x﹣700;
当x>m时,y=50×46+(m﹣50)×60+(x﹣m)×80=80x﹣20m﹣700;
∴y关于x的函数解析式为:.
(3)当x=160时,由(2)知分两种情况讨论:
①当120≤m<160时,y=80x﹣20m﹣700
∴8000≤80×160﹣20m﹣700≤9000
解得:155≤m≤205
∴155≤m<160;
②当m≥160时,y=60x﹣700,此时60×160﹣700=9530>9000,不满足8000≤y≤9000,所以m≥160不成立;
综上所述:155≤m<160.
科目:初中数学 来源: 题型:
【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | 4.5 | 6 |
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河的两岸l1与l2互相平行,A、B是l1上的两点,C、D是l2上的两点,某同学在A处测得∠CAB=90°,∠DAB=30°,再沿AB方向走20米到达点E(即AE=20),测得∠DEB=60°.求:C,D两点间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,1号楼在2号楼的南侧,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=35m.请求出两楼之间的距离AB的长度(结果保留整数)
(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
①图1中a的值为500;
②乙车的速度为35 m/s;
③图1中线段EF应表示为;
④图2中函数图象与x轴交点的横坐标为100.
其中所有的正确结论是( )
A. ①④ B. ②③
C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )
A.甲的速度是70米/分B.乙的速度是60米/分
C.甲距离景点2100米D.乙距离景点420米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com