【题目】在四边形中,,
(1)如图(a)所示,、分别是和的角平分线,判断与的位置关系,并证明.
(2)如图(b)所示,、分别是和的角平分线,直接写出与的位置关系.
(3)如图(c)所示,、分别是和的角平分线,判断与的位置关系,并证明.
【答案】(1),证明见解析;(2);(3),证明见解析
【解析】
(1)先根据四边形的内角和、角平分线的定义得出,再根据直角三角形的两锐角互余可得,从而可得,然后根据平行线的判定即可得;
(2)先由四边形的内角和得出,再根据角平分线的定义、邻补角的定义得出,然后根据等量代换、直角三角形的两锐角互余可得出,即,最后根据平行线的判定即可得;
(3)先根据四边形的内角和、邻补角的定义得出,再根据角平分线的定义得出,然后根据三角形的内角和定理得出,从而可得出.
(1).证明过程如下:
如图1,∵
∴
又∵、分别是、的角平分线
∴
∵
∴
∴;
(2).证明过程如下:
如图2,连接AC
由(1)知,
是的角平分线
同理可得:
即
又,即
,即
;
(3).证明过程如下:
如图3,设与相交于点
由(1)知,
∵
∴
∵、分别是和的角平分线
∴,
∴
∵
∴
∴.
科目:初中数学 来源: 题型:
【题目】如图所示,将矩形ABCD纸对折,设折痕为MN,再把B点叠在折痕线MN上,(如图点B’),若,则折痕AE的长为( )
A. B. C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头,运输公司有每次可装运1件、2件、3件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元现要求安排20辆货车刚好一次装运完这些集装箱,问这三种型号的货车各需多少辆?有多少种安排方式?哪些安排方式所需的运费最少?最少运费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线:,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;…,按此作法进行下去.点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等边三角形,BD为△ABC的高,延长BC至E,使CE=CD=1,连接DE,则BE=___________,∠BDE=_________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD,点F是射线DC上一动点(不与C,D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH,过点C作CG⊥HC交AE于点G.
(1)若点F在边CD上,如图1.
①证明:∠DAH=∠DCH;
②猜想:△GFC的形状并说明理由.
(2)取DF中点M,连接MG.若MG=2.5,正方形边长为4,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com