【题目】如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形;
然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断,从而找出正确的个数即可得到答案.
∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是菱形,正确;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
如下图所示:
∴EN=BC,GN=AD,
∴EG= (BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;
故①②③对.
故选C.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(m-1)x-2m2+m=0(m为实数)有两个实数根x1、x2.
(1)当m为何值时,x1=x2.
(2)若x12+x22,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,有以下两种围法.
(1)如图1,设花圃的宽AB为x米,面积为y米2,求y与x之间的含函数表达式,并确定x的取值范围;
(2)如图2,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,设花圃的宽AB为a米,面积为S米2,求S与a之间的函数表达式及S的最大值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形中,,
(1)如图(a)所示,、分别是和的角平分线,判断与的位置关系,并证明.
(2)如图(b)所示,、分别是和的角平分线,直接写出与的位置关系.
(3)如图(c)所示,、分别是和的角平分线,判断与的位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两张完全相同的矩形纸片、按如图方式放置,为重合的对角线.重叠部分为四边形,
试判断四边形为何种特殊的四边形,并说明理由;
若,,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=8cm,BC=16 cm.点P从点A出发沿AB向点B以2 cm/s的速度运动,点Q从点B出发沿BC向点C以4 cm/s的速度运动.如果点P,Q分别从点A,B同时出发,则_____________秒钟后△PBQ与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,是的平分线,点在上,,且点到的距离为,过点作,,垂足分别为,,易得到结论: .
(1)把图中的绕点旋转,当与不垂直时(如图),上述结论是否成立?并说明理由.
(2)把图中的绕点旋转,当与的反向延长线相交于点时:
①请在图中画出图形;
②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段,之间的的数量关系,不需证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com