【题目】如图1,已知直线y=kx与抛物线y= 交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
【答案】
(1)
解:把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=
(2)
解:方法一:
是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时 =tan∠AOM=2;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…,
∴ =tan∠AOM=2,
当点P、Q在抛物线和直线上不同位置时,同理可得 =2
方法二:
过点Q分别作y轴,x轴垂线,垂足分别为G,H,
∵QN⊥QM,∴∠NQH+∠HQM=90°,
∵QG⊥QH,∴∠NQH+∠GQN=90°,
∴∠HQM=∠GQN,
∵∠QGN=∠QHM=90°,
∴△QGN∽△QHM,
∴QM:QN=2:1
(3)
解:方法一:如答图2,
延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC= OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴ ,
∴OF= ,
∴点F( ,0),
设点B(x,﹣ ),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴ ,
即 ,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5;
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F( ,0)代入得
k=﹣ ,b=10,
∴y=﹣ x+10,
∴ ,
∴ (舍去), ,
∴B(6,2),
∴AB=5
(其它方法求出AB的长酌情给分)
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=a,则AE=3 ﹣a(0<a<3 ),
由△ABE∽△OED得 ,
∴ = ,
∴m= a(3 ﹣a)=﹣ a2+ a(0<a<3 ),
∴顶点为( , )
如答图3,
当m= 时,OE=a= ,此时E点有1个;
当0<m< 时,任取一个m的值都对应着两个a值,此时E点有2个.
∴当m= 时,E点只有1个
当0<m< 时,E点有2个
方法二:
延长AB交x轴于F,过点F作FC⊥OA于点C.
∵∠BAE=∠AOD,
∴OF=AF,
∵FC⊥OA,
∴C为OA中点,
∵O(0,0),A(3,6),
∴C( ,3),
KOA=2,
∵KOA×KPC=﹣1,
∴KPC=﹣ ,
∴lFC:y=﹣ x+ ,
当y=0时,x= ,即F( ,0),
∴lAF:y=﹣ x+10,
∴ x1=3(舍),x2=6,
∴B(6,2),AB=5,
∵D(m,0),OD=m,
设AE=a,OE=3 ﹣a,
∠OED=∠ABE,
∴△ABE∽△OED,
∴ ,
∴ ,
∴a2﹣ a+5m=0,
∵E只有一个,
∴△=45﹣20m=0,
∴m= ,
∵E只有两个,
∴△=45﹣20m>0,
即0<m< 时,E有两个
【解析】(1)利用待定系数法求出直线y=kx的解析式,根据A点坐标用勾股定理求出线段OA的长度;(2)如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H,构造相似三角形△QHM与△QGN,将线段QM与线段QN的长度之比转化为相似三角形的相似比,即 =tan∠AOM=2为定值.需要注意讨论点的位置不同时,这个结论依然成立;(3)由已知条件角的相等关系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED.设OE=a,则由相似边的比例关系可以得到m关于x的表达式m=﹣ a2+ a(0<a<3 ),这是一个二次函数.借助此二次函数图象(如答图3),可见m在不同取值范围时,a的取值(即OE的长度,或E点的位置)有1个或2个.这样就将所求解的问题转化为分析二次函数的图象与性质问题.另外,在相似三角形△ABE与△OED中,运用线段比例关系之前需要首先求出AB的长度.如答图2,可以通过构造相似三角形,或者利用一次函数(直线)的性质求得AB的长度.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m= 时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:
(1)在统计的这段时间内,共有万人到市图书馆阅读,其中商人所占百分比是 ,
(2)将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);
(3)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB内部有顺次的四条射线:OE、OC、OD、OF、OE平分∠AOC,OF平分∠DOB.
(1)若∠AOB=160°,∠COD=40°,求∠EOF的度数;
(2)若∠AOB=a,∠COD=β,求∠EOF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠A0B=420,点P为∠A0B内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________,∠MPN ________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,
(1)求证:△CDE为等边三角形;
(2)请连接BE,若AB=4,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.点P是线段BC上的动点(点P不与B,C重合),连接并延长AP交抛物线于另一点Q,设点Q的横坐标为x.
(1)①写出点A,B,C的坐标:A(),B(),C();
②求证:△ABC是直角三角形;
(2)记△BCQ的面积为S,求S关于x的函数表达式;
(3)在点P的运动过程中, 是否存在最大值?若存在,求出 的最大值及点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com