精英家教网 > 初中数学 > 题目详情

【题目】“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究,得出结论:如图1,中,的对边分别是,如果,那么.下面给出小楠对其中一种特殊情形的一种证明方法.

已知:如图2,在△中,.求证:

证明:如图2,延长,使得

∴△

,即

根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以);

已知:如图1,在△中,

求证:

【答案】见解析

【解析】

延长CAD,使得AD=AB,证明∠D=ABC,得到△ABC∽△BDC,再利用相似三角形的性质即可求解.

证明:延长CAD,使得AD=AB,连接BD

∠D=ABD

∠CAB=∠D+ABD=2D

∵∠CAB=2∠ABC

∠D=∠ABC,又∠C=∠C

∴ABC∽△BDC

,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解不等式组:请结合题意填空,完成本题的解答:

(Ⅰ)解不等式①,得:_________________;

(Ⅱ)解不等式②,得:_________________;

(Ⅲ)把不等式①和②的解集在数轴上表示出来;

IV)原不等式组的解集为:_________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有矩形,将矩形绕原点逆时针旋转得到矩形OA′B′C′.

()如图1,当点A′首次落在上时,求旋转角;

()()的条件下求点B′的坐标;

()如图2,当点B′首次落在轴上时,直接写出此时点A′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2﹣2x+3.

(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.

(2)若图象与x轴交点为A.B,与y轴交点为C,求A、B、C三点的坐标;

(3)在图中画出图象.并求出△ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知∠,为射线上一点,且为射线上的两个动点(),过点,垂足为点,且,联结

1)若时,求的值;

2)设之间的函数解析式,并写出定义域;

3)如图(2),过点的垂线,垂足为点,交射线于点,点在射线上运动时,探索线段的长是否发生变化?若不发生变化,求出它的值。若发生变化,试用含x的代数式表示的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴正半轴交于点A30).以OA为边在轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF,则= ,点E的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:

正方形中,点分别是边的中点,连接交于点,易知分割成的四个四边形均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

1)图1中正方形分割成的四个小正方形中,每个正方形与原正方形的相似比为_______

2)如图2,已知中,,小明发现也是“自相似图形”,他的思路是:过点于点,则分割成2个与它自己相似的小直角三角形.的相似比为________;则的相似比为_______;

3)现有一个矩形是自相似图形,其中长,宽.

①如图3-1,若将矩形纵向分割成两个全等矩形,且与原矩形都相似,则_____(用含的式子表示);

②如图3-2若将矩形纵向分割成个全等矩形,且与原矩形都相似,则______(用含的式子表示);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课堂上,老师给出一道题:如图,将抛物线Cyx26x+5x轴下方的图象沿x轴翻折,翻折后得到的图象与抛物线Cx轴上方的图象记为G,已知直线lyx+m与图象G有两个公共点,求m的取值范围甲同学的结果是﹣5m<﹣1,乙同学的结果是m.下列说法正确的是(  )

A.甲的结果正确

B.乙的结果正确

C.甲、乙的结果合在一起才正确

D.甲、乙的结果合在一起也不正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段ABCD分别表示甲乙两建筑物的高,BAADCDDA,垂足分别为AD.从D点测到B点的仰角α60°,从C点测得B点的仰角β30°,甲建筑物的高AB=30

(1)求甲、乙两建筑物之间的距离AD

(2)求乙建筑物的高CD

查看答案和解析>>

同步练习册答案