精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD的对角线相交于坐标原点,点A的坐标为(a,2),点B的坐标为(﹣1,﹣ ),点C的坐标为(2 ,c),那么a,c的值分别是(

A.a=﹣1,c=﹣
B.a=﹣2 ,c=﹣2
C.a=1,c=
D.a=2 ,c=2

【答案】B
【解析】解:∵四边形ABCD为菱形,
∴OA=OC,
又∵点O为坐标原点,
∴点A和点C关于原点对称,
∵点A(a,2),点C的坐标为(2 ,c),
∴a=﹣2 ,c=﹣2,
故选B.

【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y= 的图象经过点C,一次函数y=ax+b的图象经过A、C两点.

(1)求反比例函数与一次函数的解析式;
(2)求反比例函数与一次函数的另一个交点M的坐标;
(3)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)ABC,∠C=90°,AB=25cmBC=15cm若动点P从点C开始沿着CBAC的路径运动且速度为每秒5cm设点P运动的时间为t

1)P运动2秒后ABP的面积

2)如图(2),t为何值时BP平分∠ABC

3)BCP为等腰三角形时直接写出所有满足条件t的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四种结论:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正确结论的序号是(

A.①②
B.②③
C.②④
D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.

(1)判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是∠ABC的平分线,DECB,交AB于点EA=45°,BDC=60°.BDE各内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】济宁市五城同创活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.

1)求乙工程队单独完成这项工作需要多少天?

2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中xy均为正整数,且x<46y<52,求甲、乙两队各做了多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣ x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点A坐标为(﹣1,0).

(1)求抛物线的解析式;
(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;
(3)在抛物线上的对称轴上是否存在一点Q,使△QCD是以CD为腰的等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.

查看答案和解析>>

同步练习册答案