精英家教网 > 初中数学 > 题目详情

【题目】已知:一次函数的图象与反比例函数)的图象相交于AB两点(AB的右侧).

1)当A42)时,求反比例函数的解析式及B点的坐标;

2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

3)当Aa,﹣2a+10),Bb,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BCy轴于点D.若,求△ABC的面积.

【答案】1B18);(2)(﹣4,﹣2)、(﹣16);(310

【解析】

试题(1)把点A的坐标代入,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;

2△PAB是以AB为直角边的直角三角形,分两种情况讨论:∠BAP=90°,过点AAH⊥OEH,设APx轴的交点为M,如图1,求得OE=5OH=4AH=2HE=1.证明△AHM∽△EHA,再根据相似三角形的性质可求出MH,从而得到点M的坐标,然后用待定系数法求出直线AP的解析式,再解直线AP与反比例函数的解析式组成的方程组,就可得到点P的坐标;∠ABP=90°,同理即可得到点P的坐标;

3)过点BBS⊥y轴于S,过点CCT⊥y轴于T,连接OB,如图2,易证△CTD∽△BSD,根据相似三角形的性质可得.由Aa﹣2a+10),Bb﹣2b+10),可得C﹣a2a﹣10),CT=aBS=b,即可得到.由AB都在反比例函数的图象上可得a﹣2a+10=b﹣2b+10),把代入即可求出a的值,从而得到点ABC的坐标,运用待定系数法求出直线BC的解析式,从而得到点D的坐标及OD的值,然后运用割补法可求出SCOB,再由OA=OC可得SABC=2SCOB

试题解析:(1)把A42)代入,得k=4×2=8反比例函数的解析式为,解方程组,得:B的坐标为(18);

2∠BAP=90°,过点AAH⊥OEH,设APx轴的交点为M,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5E50),OE=5∵A42),∴OH=4AH=2∴HE=5﹣4=1∵AH⊥OE∴∠AHM=∠AHE=90°.又∵∠BAP=90°∴∠AME+∠AEM=90°∠AME+∠MAH=90°∴∠MAH=∠AEM∴△AHM∽△EHA∴MH=4∴M00),可设直线AP的解析式为,则有,解得m=直线AP的解析式为,解方程组,得:P的坐标为(﹣4﹣2).

∠ABP=90°,同理可得:点P的坐标为(﹣16).

综上所述:符合条件的点P的坐标为(﹣4﹣2)、(﹣16);

3)过点BBS⊥y轴于S,过点CCT⊥y轴于T,连接OB,如图2,则有BS∥CT∴△CTD∽△BSD∵Aa﹣2a+10),Bb﹣2b+10),∴C﹣a2a﹣10),CT=aBS=b=,即∵Aa﹣2a+10),Bb﹣2b+10)都在反比例函数的图象上,∴a﹣2a+10=b﹣2b+10),∴a﹣2a+10=﹣2×+10).∵a≠0∴﹣2a+10=﹣2×+10),解得:a=3∴A34),B26),C﹣3﹣4).

设直线BC的解析式为,则有,解得:直线BC的解析式为.当x=0时,y=2,则点D02),OD=2∴SCOB=SODC+SODB=OD·CT+OD·BS=×2×3+×2×2=5∵OA=OC∴SAOB=SCOB∴SABC=2SCOB=10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(-3,﹣2)两点.

(1)求m的值;

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点, 且y1>y2,求实数p的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在梯形ABCD中,ADBCACBC10cosACB,点E在对角线AC上(不与点AC重合),∠EDC=∠ACBDE的延长线与射线CB交于点F,设AD的长为x

1)如图1,当DFBC时,求AD的长;

2)设ECy,求y关于x的函数解析式,并直接写出定义域;

3)当△DFC是等腰三角形时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.

(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;

(2)OE的长是否与a值有关,说明你的理由;

(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;

(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年东营市教育局在全市中小学开展了情系疏勒书香援疆捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:

图书种类

频数(本)

频率

名人传记

175

a

科普图书

b

0.30

小说

110

c

其他

65

d

(1)求该校九年级共捐书多少本;

(2)统计表中的a=   ,b=   ,c=   ,d=   

(3)若该校共捐书1500本,请估计科普图书小说一共多少本;

(4)该社团3名成员各捐书1本,分别是1名人传记”,1科普图书”,1小说,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐名人传记”,1人捐科普图书的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校喜迎中华人民共和国成立70周年,将举行以歌唱祖国为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.

1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?

2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.

3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.

1)求甲、乙两种商品每件的进价分别是多少元?

2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

1x22x10

2x3x2)=46x

3)﹣32+|3|+π20+(﹣1

查看答案和解析>>

同步练习册答案