【题目】计算
(1)x2﹣2x﹣1=0;
(2)x(3x﹣2)=4﹣6x;
(3)﹣32+|﹣﹣3|+(π﹣2)0﹣+(﹣)﹣1.
【答案】(1)x1=,x2=﹣;(2)x1=,x2=﹣2;(3)﹣8﹣.
【解析】
(1)a=1,b=﹣2,c=﹣1,用求根公式解即可;(2)先移项,再根据因式分解法解即可;(3)先分别按照乘方,绝对值,0次幂,二次根式及负整数幂计算各式,然后再根据实数运算计算即可.
解:(1)∵a=1,b=﹣2,c=﹣1,
∴△=(﹣2)2﹣4×1×(﹣1)=12>0,
则x==±,
即x1=,x2=;
(2)∵x(3x﹣2)=﹣2(3x﹣2),
∴x(3x﹣2)+2(3x﹣2)=0,
则(3x﹣2)(x+2)=0,
∴3x﹣2=0或x+2=0,
解得x1=,x2=﹣2;
(3)原式=﹣9+3++1﹣2﹣3
=﹣8﹣.
科目:初中数学 来源: 题型:
【题目】已知:一次函数的图象与反比例函数()的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知双曲线(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.从1,2,3,4,5中随机取出一个数,取得偶数的可能性比取得奇数的大
B.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则甲组数据比乙组数据稳定
C.数据﹣2,1,3,4,4,5的中位数是4
D.了解重庆市初中学生的视力情况,适宜采用抽样调查的方法
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.
(1)当∠MAN绕点A旋转到如图1的位置时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到BM≠DN时(如图2),则线段BM,DN和MN之间数量关系是 ;
(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.
(1)求反比例函数与直线AC的解析式;
(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.
(1)判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;
(2)抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx﹣3的函数关系式;
(3)抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物线”;
①求m的值;
②点P是x轴负半轴上一点,设抛物线L1、L2的“共点”为Q,作点P关于点Q的对称点P′,以PP′为对角线作正方形PMP′N,当点M或点N落在抛物线L1上时,直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com