【题目】如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).
【答案】(1)两建筑物底部之间水平距离BD的长度为60米;
(2)建筑物CD的高度为(60﹣20)米.
【解析】
试题(1)由题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,再由BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;
(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.
试题解析:(1)根据题意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60,
∴两建筑物底部之间水平距离BD的长度为60米;
(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=60×=20,
又∵FD=60,
∴CD=60﹣20,
∴建筑物CD的高度为(60﹣20)米.
科目:初中数学 来源: 题型:
【题目】对于二次函数y= +(1-2a)x(a>0),下列说法错误的是( )
A. 当时,该二次函数图象的对称轴为y轴
B. 当a>时,该二次函数图象的对称轴在y轴的右侧
C. 该二次函数的图象的对称轴可为x=1
D. 当x>2时,y的值随x的值增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知内接于,是直径,点在上,,过点作,垂足为,连接交边于点.
(1)求证:;
(2)求证:;
(3)连接,设的面积为,,求四边形的面积(用含有的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,∠CAF=2∠B.
(1)求证:AE=AC;
(2)若⊙O的半径为4,E是OB的中点,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.
(1)求条形图中被遮盖的数,并写出册数的中位数;
(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;
(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尺规作图:过直线外一点作已知直线的垂线,已知:如图(1),直线及外一点,求作的垂线,使它经过点,小红的做法如下:
①在直线上任取一点B,连接
②以为圆心,长为半径作弧,交直线于点;
③分别以为圆心, 长为半径作弧,两弧相交于点;
④作直线,直线即为所求如图(2),小红的做题依据是( )
A.四条边都相等的四边形是菱形;菱形的对角线互相垂直
B.直径所对的圆周角是直角
C.直线外一点到这条直线上垂线段最短
D.同圆或等圆中半径相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为鼓励市民节约用气,对居民管道天然气实行两档阶梯式收费,年用天然气量310立方米及以下为第一档;年用天然气量超出310立方米为第二档,某户应交天然气费(元)与年用天然气量(立方米)的关系如图所示,观察图像并回答问题:
(1)求与之间的函数解析式并写出自变量的取值范围;
(2)嘉琪家2018年天然气费为1029元,求嘉琪家2018年使用天然气量是否超出310立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是( )
A. 抽样调查,24 B. 普查,24 C. 抽样调查,26 D. 普查,26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.
(1)求证:AC是⊙O的切线;
(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com