【题目】对于二次函数y= +(1-2a)x(a>0),下列说法错误的是( )
A. 当时,该二次函数图象的对称轴为y轴
B. 当a>时,该二次函数图象的对称轴在y轴的右侧
C. 该二次函数的图象的对称轴可为x=1
D. 当x>2时,y的值随x的值增大而增大
科目:初中数学 来源: 题型:
【题目】如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为,看这栋大楼底部C的俯角为,热气球A的高度为270米,则这栋大楼的高度为______米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.
(1)求点D的坐标;
(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;
(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:
(1)建立函数模型
设矩形相邻两边的长分别为x,y,由矩形的面积为4,得,即;由周长为m,得,即.满足要求的应是两个函数图象在第 象限内交点的坐标.
(2)画出函数图象
函数的图象如图所示,而函数的图象可由直线平移得到.请在同一直角坐标系中直接画出直线.
(3)平移直线,观察函数图象
①当直线平移到与函数的图象有唯一交点时,周长m的值为 ;
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.
(4)得出结论
若能生产出面积为4的矩形模具,则周长m的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】清代诗人高鼎的诗句“儿童散学归来早,忙趁东风放纸鸢”描绘出一幅充满生机的春天景象.小明制作了一个风筝,如图 1 所示,AB 是风筝的主轴,在主轴 AB上的 D、E 两处分别固定一根系绳,这两根系绳在 C 点处打结并与风筝线连接.如图 2,根据试飞,将系绳拉直后,当∠CDE=75°,∠CED=60°时,放飞效果佳.已知 D、E 两点之间的距离为 20cm,求两根系绳 CD、CE 的长. (结果保留整数,不计打结长度.参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一个抛物线经过A(0,1),B(1,3),C(﹣1,1)三点.
(1)求这个抛物线的表达式及其顶点D的坐标;
(2)联结AB、BC、CA,求tan∠ABC的值;
(3)如果点E在该抛物线的对称轴上,且以点A、B、C、E为顶点的四边形是梯形,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com