【题目】如图,矩形ABCD为台球桌面,AD=240cm,AB=120cm,球目前在G点位置,AG=80cm,如果小丁瞄准BC边上的点F将球打过去,经过点F反弹后碰到CD边上的点H,再经过点H反弹后,球刚好弹到AD边的中点E处落袋.
(1)求证:△BGF∽△DHE;
(2)求BF的长.
【答案】(1)见详解;(2)90 cm
【解析】
(1)根据两角对应相等的两个三角形相似即可判断.
(2)延长AD交FH的延长线于N,作NM⊥BC交BC的延长线于M.由△GBF∽△NFM,推出 ,由此构建方程即可解决问题.
(1)证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,
∵∠GFB=∠HFC,∠FHC=∠EHD,∠HFC+∠FHC=∠DEH+∠EHD=90°,
∴∠HED=∠HFC,
∴∠GFB=∠HED,
∴△BGF∽△DHE;
(2)解:延长AD交FH的延长线于N,作NM⊥BC交BC的延长线于M.
∵∠B=∠M=90°,∠GFB=∠HFC,
∴△GBF∽△NFM,
∴
∴BF=90 cm.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为8,则GE+FH的最大值为( )
A.8B.12C.16D.20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②7a+c<0;③a+b≤m(am+b)(m为任意实数)④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的个数有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c图象经过(0,0)、(1,1)、(1,9)三点,下列性质错误的是( )
A.开口向上B.对称轴在y轴左侧
C.经过第四象限D.当x>0,y随x增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是( )
A.2B.4C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,D在BC上,且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为x秒.
(1)周含x的代表数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,点是线段上任意一点,过点作交于点,过点作交于点,过点作交于点.设线段的长为.
(1)用含的代数式表示线段的长.
(2)当四边形为菱形时,求的值.
(3)设与矩形重叠部分图形的面积为,求与之间的函数关系式.
(4)连结、,当与垂直或平行时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线经过,,三点.
求抛物线的解析式;
若点M为第三象限内抛物线上一动点,点M的横坐标为m,的面积为S.求S关于m的函数关系式,并求出S的最大值.
若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com