精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的一条弦,C⊙O上一动点,∠ACB=30°,EF分别是ACBC的中点,直线EF⊙O交于GH两点,⊙O的半径为8,GE+FH的最大值为(

A.8B.12C.16D.20

【答案】B

【解析】

首先连接OAOB,根据圆周角定理,求出∠AOB=2ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为8,可得AB=OA=OB=8,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.

如图所示,连接OAOB

∵∠ACB=30°,

∴∠AOB=2ACB=60°,

OA=OB

∴△AOB为等边三角形,

O的半径为8

AB=OA=OB=8

∵点EF分别是ACBC的中点,

EF=AB=4

GE+EF+FH=GHEF为定值,

∴当GH最大时,GE+FH最大

∵当弦GH是圆的直径时,它的最大值为:8×2=16

GE+FH的最大值为:164=12.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知矩形,在上取两点左边),以为边作等边三角形,使顶点上.

(1)PEF的边长;

(2)PEF的边在线段上移动.分别交于点求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是平行四边形,以AB为直径的经过点D, E上一点,

(1)判断CD的位置关系,并说明理由;

(2) BC=2 .求阴影部分的面积.(结果保留π 的形式)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是边ADCD上的点,且EAD的中点,FC3DF,连接EF并延长交BC的延长线于点G

1)求证:△ABE∽△DEF

2)若正方形的边长为8,求△BEG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

1)求yx之间的函数表达式;

2)求售价为多少元时每天获得利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了丰富学生课余生活,计划开设以下课外活动项目:A—版画,B—机器人,C—航模,D—园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有 人;扇形统计图中,“D—园艺种植的学生人数所占圆心角的度数是 °

(2)请你将条形统计图补充完整;

(3)若该校学生总数为1000,试估计该校学生中最喜欢机器人和最喜欢航模项目的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米12150元的均价开盘销售

求平均每次下调的百分率.

某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:

折销售;不打折,一次性送装修费每平方米250元.

试问哪种方案更优惠?比另外一种方案优惠多少元?不考虑其他因素

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DEAB于点E,且交AC于点P,连结AD.

(1)求证:∠DAC=DBA;

(2)求证:PD=PF;

(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD为台球桌面,AD=240cmAB=120cm,球目前在G点位置,AG=80cm,如果小丁瞄准BC边上的点F将球打过去,经过点F反弹后碰到CD边上的点H,再经过点H反弹后,球刚好弹到AD边的中点E处落袋.

1)求证:BGF∽△DHE

2)求BF的长.

查看答案和解析>>

同步练习册答案