精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DE⊥AC,连结OD,若AB=10,AC=6,求DE的长.

【答案】解:连结BC,如图,BC与OD相交于点F, ∵AB是⊙O的直径,
∴∠ACB=90°,
∴BC⊥AE,
又∵DE⊥AC,
∴BC∥DE,
∵DE是⊙O的切线,
∴OD⊥DE,
∴OD⊥BC,
∴CF= BC,
∵BC⊥AE,DE⊥AC,DE⊥AC,
∴四边形CEDF是矩形.
∴DE=CF= BC,
在Rt△ACB中,∠ACB=90°,
∴BC= =8,
∴CF=4,
∴DE=4.

【解析】连结BC,如图,BC与OD相交于点F,利用圆周角定理得到BC⊥AE,则BC∥DE,再利用切线的性质得到OD⊥DE,接着利用垂径定理得到CF= BC,接下来判定四边形CEDF是矩形得到DE=CF= BC,然后利用勾股定理计算出BC,从而得到CF和DE的长.
【考点精析】掌握勾股定理的概念和切线的性质定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BDBD的延长线于点E.CE=2,延长CE,BA交于点F.

(1)求证:△ADB≌△AFC;

(2)求BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.

①图乙和图丙中(1)(2)(3)是否为正方形?为什么?

②图中(1)(2)(3)的面积分别是多少?

③图中(1)(2)的面积之和是多少?

④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?

由此你能得到关于直角三角形三边长的关系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=mx+10mx轴负半轴、y轴正半轴分别交于A、B两点.

(1)当OA=OB时,试确定直线l的函数表达式;

(2)在(1)的条件下,如图2,设Q为直线AB上一点,作直线OQ,过A、B两点分别作AMOQM,BNOQN,若AM=8,BN=6,求MN的长;

(3)当m取不同的值时,点By轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角OBF和等腰直角ABE,连EFy轴于P点,如图3.问:当点B y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,当x>0时,y的值随x的值增大而减小的函数是(
A.y=3x
B.y=x﹣1
C.y=
D.y=2x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx经过A(4,0),B(1,3)两点,点B、C关于抛物线的对称轴l对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的解析式;
(2)若点M在直线BH上运动,点N在x轴上运动,是否存在这样的点M、N,使得以点M为直角顶点的△CNM是等腰直角三角形?若存在,请求出点M、N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后,两点相距15个单位长度.已知动点AB的速度比是1:4(速度单位:单位长度/s).

1)求出两个动点运动的速度,并在数轴上标出AB两点从原点出发运动3s时的位置;

2)若AB两点从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两个动点的正中间?

3)在(2)中原点恰好处在两个动点的正中间时,AB两点同时向数轴负方向运动,另一动点C和点B同时从点B位置出发向A运动,当遇到A后,立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/s的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1(注:与图2完全相同),二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.

(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列汽车标志中即是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案