【题目】在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.
甲队五次预选赛成绩统计表
比赛场次 | 1 | 2 | 3 | 4 | 5 |
成绩(分) | 20 | 0 | 20 | x | 20 |
乙队五次预选赛成绩条形统计图
已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.
(1)求出乙第四次预选赛的成绩;
(2)求甲队成绩的平均数及x的值;
(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.
【答案】(1)乙队第4场的成绩为20分;(2)甲队成绩的平均数为16分,x=20;(3).
【解析】
(1)根据已知条件可判断出乙队成绩的众数为20分,则可求出第四场成绩为20分;
(2)先计算出乙的平均成绩,据此可得甲的平均成绩,再根据平均数的公式列出关于x的方程,即可求解;
(3)列表得出所有等可能结果,从中找到甲队成绩优于乙队成绩的结果出,利用概率求解即可.
解:(1)∵甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20分,∴乙队成绩的众数为20分,
则乙队第4场的成绩为20分,
补全条形统计图如解图:
(2)∵乙队五次成绩的平均数为×(10+10+20+20+20)=16(分),
∴甲队成绩的平均数为16分,
由×(20+0+20+x+20)=16,解得x=20;
(3)列表如下:
乙 甲 | 10 | 10 | 20 |
20 | (20,10) | (20,10) | (20,20) |
0 | (0,10) | (0,10) | (0,20) |
20 | (20,10) | (20,10) | (20,20) |
由上表可知,共有9种等可能的结果,其中甲队成绩优于乙队成绩的结果有4种,
∴P(选择到的甲队成绩优于乙队成绩)=.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=ax+b(a≠0)与反比例函数y2=(k>0),两函数图象交于(4,1),(﹣2,n)两点.
(1)求a,k的值;
(2)若y2>y1>0,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.
(1)求抛物线的解析式;
(2)x轴上是否存在点P,使PC+PB最小?若存在,请求出点P的坐标及PC+PB的最小值;若不存在,请说明理由;
(3)连接BC,设E为线段BC中点.若M是抛物线上一动点,将点M绕点E旋转180°得到点N,当以B、C、M、N为顶点的四边形是矩形时,直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.
(1)求证:四边形ADCE是平行四边形;
(2)若AE⊥EC,EF=EC=5,求四边形ADCE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数b,c是常数,图象的一部分,与x轴的交点A在点和之间,对称轴是对于下列说法:;;;为实数);(5)当时,,其中正确的是( )
A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(4)D.(3)(4)(5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,则BC的长度为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x>0)的图象与线段AB相交于点C,C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(m,6)(m≠6),若△OAB的面积为12,则k的值为( )
A.4B.6C.8D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点,与轴交于点,(点在点左侧).直线与抛物线的对称轴交于点.
(1)求抛物线的对称轴;
(2)直接写出点的坐标;
(3)点与点关于抛物线的对称轴对称,过点作轴的垂线与直线交于点,若,结合函数图象,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com