精英家教网 > 初中数学 > 题目详情

【题目】如图,为某景区五个景点ABCDE的平面示意图,BAC的正东方向,DC的正北方向,DE均在B的北偏西18°方向上,EA的西北方向上,CD相距1000米,EBD的中点处,求景点BA之间的距离.(结果保留整数)

(参考数据:sin18°≈0.3cos18°≈0.9tan18°≈0.3sin72°≈0.9cos72°≈0.3tan72°≈3.11.4

【答案】景点BA之间的距离为350米.

【解析】

EEFABF,在Rt△BCD中求出BD的长,进而求出BE的长,在Rt△AEF中,求得EF,在Rt△BEF中,求得BF,于是得到结论.

由题意得,C90°,∠D=∠BEF18°CAE45°

EEFABF

Rt△BCD中,BD=米,

EBD的中点处,

BE=米.

Rt△AEF中,EFAFBEcos18°×0.9500米,

Rt△BEF中,BFEFtan18°150米,

ABAFBF500150350(米).

答:景点BA之间的距离为350米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线ykx+1x轴、y轴分别相交于点AB,将AOB绕点A顺时针旋转,使AO落在AB上,得到ACD,将ACD沿射线BA平移,当点D到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为SS关于m的函数图象如图2所示(其中0m≤22ma时,函数的解析式不同)

1)填空:a   k   

2)求S关于m的解析式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点

1)求一次函数和反比例函数的解析式;

2)根据图象,直接写出时,的取值范围;

3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:抛物线轴交于两点,与轴交于点,点为顶点,连接,抛物线的对称轴与轴交与点

1)求抛物线解析式及点的坐标;

2G是抛物线上之间的一点,且,求出点坐标;

3)在抛物线上之间是否存在一点,过点,交直线于点,使以为顶点的三角形与相似?若存在,求出满足条件的点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次海上救援中,两艘专业救助船同时收到某事故渔船的求救讯息,已知此时救助船的正北方向,事故渔船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故渔船与救助船相距120海里.

1)求收到求救讯息时事故渔船与救助船之间的距离;

2)若救助船A分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船处搜救,试通过计算判断哪艘船先到达.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019218日,《感动中国2018年度人物颁奖盛典》在央视综合频道播出,其中乡村教师张玉滚的事迹令人非常感动某校团委组织“支援乡村教育,帮助教师张玉滚”的捐款活动,以下为九年级(1)班捐款情况:

捐款金额(元)

5

10

20

50

人数(人)

12

13

16

11

则这个班学生捐款金额的中位数和众数分别为(

A.1550B.2020C.1020D.2050

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG,AE,FG 分别交射线CD 于点 PH,连结 AH,若 P CH 的中点,则APH 的周长为(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+c的图象经过点A(10)、点B(30)、点C(4y1),若点D(x2y2)是抛物线上任意一点,有下列结论:

①二次函数yax2+bx+c的最小值为﹣4a

②若﹣1≤x2≤4,则0≤y2≤5a

③若y2y1,则x24

④一元二次方程cx2+bx+a0的两个根为﹣1

其中正确结论的是_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(满分8分)如图,某教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C的距离为18m (BFC在一条直线上).

求教学楼AB的高度.(结果保留整数)

参考数据sin22°0.37cos22°0.93tan22°0.40 .

查看答案和解析>>

同步练习册答案