精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠B和∠C的平分线交于点I,边ABAC的垂直平分线交于点O,若∠BIC90°+θ,则∠BOC=(

A.90°θB.C.180°θD.以上答案都不对

【答案】B

【解析】

根据角平分线的性质可得∠Aθ,再根据线段垂直平分线的性质和三角形内角和定理即可推出∠BOC.

解:如图,

∵∠B和∠C的平分线交于点I

∴∠IBCABC,∠ICBACB

BIC180°﹣(∠IBC+ICB

180°(∠ABC+ACB

180°180°﹣∠BAC

180°90°+BAC

90°+BAC

∵∠BIC90°+θ

∴∠BACθ.

ABAC的垂直平分线交于点O

OAOBOC

∴∠1=∠OBA,∠2=∠OCA

∴∠BOC180°﹣(∠OBC+OCB

180°﹣(∠ABC﹣∠1+ACB﹣∠2

180°﹣(180°﹣∠BAC﹣∠1﹣∠2

=∠BAC+1+2

2BAC

2θ.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.

(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.

①求证:BE=BF;

②请判断△AGC的形状,并说明理由.

(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EFBCABACEF.

(1)图①中有几个等腰三角形?猜想:EFBECF之间有怎样的关系.

(2)如图②,ABAC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EFBECF间的关系还存在吗?

(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OEBCABE,交ACF.这时图中还有等腰三角形吗?EFBECF关系又如何?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程(组)解应用题:

汾河古称“汾”,又称汾水,是山西最大的河流,被山西人称为“母亲河”,对山西省的历史文化有着深远的影响.为打造“一川清水、两岸锦绣”的生态环境,现将一段长为的汾河两岸绿化任务交由甲、乙两个工程队先后接力完成.甲工程队每天绿化,乙工程队每天绿化,共用时天.

根据以上信息,小敏和小颖由自己的设想方案分别列出了尚不完整的方程组:

小敏:

小颖:

1)请你在方框中补全小敏和小颖所列的方程组;

2)根据小敏和小颖所列的方程组,分别指出未知数表示的实际意义:

小敏:表示_____________表示____________

小颖:表示____________表示______________

3)请你选择一种方案,求甲、乙两工程队分别绿化河岸多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形网格上有6个三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中与①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(0,12),B(16,0),动点P从点A开始在线段AO上以每秒1个单位的速度向点O移动,同时点Q从点B开始在BA上以每秒2个单位的速度向点A移动,设点P、Q移动的时间为t.

⑴求直线AB的解析式;

⑵求t为何值时,△APQ与△AOB相似?

⑶当t为何值时,△APQ的面积为个平方单位?

⑷当t为何值时,△APQ的面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1.01.211.44,正放置的四个正方形的面积为S1S2S3S4,则S1+S2+S3+S4=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场出售一批进价为2元的贺卡,在营运中发现此商品的日销价x(单位:元)与销售量y(单位:张)之间有如下关系:

x/元

3

4

5

6

y/张

20

15

12

10

(1)猜测并确定y与x的函数关系式.

(2)当日销售单价为10元时,贺卡的日销售量是多少张?

(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大并求出最大的利润.

查看答案和解析>>

同步练习册答案