【题目】如图,在平面直角坐标系中,函数的图象与函数()的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为2:3.
(1) , ;
(2)求点的坐标;
(3)若将绕点顺时针旋转,得到,其中的对应点是,的对应点是,当点落在轴正半轴上,判断点是否落在函数()的图象上,并说明理由.
【答案】(1)6,5;(2);(3),点不在函数的图象上.
【解析】
(1)将点分别代入反比例函数与一次函数的表达式中即可求出k,b的值;
(2)先求出B的坐标,然后求出,进而求出,得出C的纵坐标,然后代入到一次函数的表达式中即可求出横坐标;
(3)先根据题意画出图形,利用旋转的性质和,求出 的纵坐标,根据勾股定理求出横坐标,然后判断横纵坐标之积是否为6,若是,说明在反比例函数图象上,反之则不在.
(1)将点代入反比例函数中得 ,
∴
∴反比例函数的表达式为
将点代入一次函数中得 ,
∴
∴一次函数的表达式为
(2)当时, ,解得
∵与的面积比为2:3.
设点C的坐标为
当时,,解得
∴
(3)如图,过点 作 于点D
∵绕点顺时针旋转,得到
∴
∴点不在函数的图象上.
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).
(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;
(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E,F,且BE=DF.
(1)如图1,求证:ABCD是菱形;
(2)如图2,连接BD,交AE于点G,交AF于点H,连接EF、FG,若∠CEF=30°,在不添加任何字母及辅助线的情况下,请直接写出图中面积是△BEG面积2倍的所有三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ABDF为菱形时,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象与轴和轴分别交于、两点,与反比例函数的图象分别交于、两点.
(1)如图,当,点在线段上(不与点、重合)时,过点作轴和轴的垂线,垂足为、.当矩形的面积为2时,求出点的位置;
(2)如图,当时,在轴上是否存在点,使得以、、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,说明理由;
(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过A,B,C三点.
(1)求抛物线的解析式。
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在等腰直角三角形ABC中,AB=BC,∠ABC=90°.D是平面上一点,连结BD.将线段BD绕点B逆时针旋转90°得到线段BE,连结AE,CD.
(1)在图1中补全图形,并证明:AE⊥CD.
(2)当点D在平面上运动时,请猜测线段AD,CE,AB,BD之间的数量关系.
(3)如图2,作点A关于直线BE的对称点F,连结AD,DF,BF.若AB=11,BD=7,AD=14,求线段DF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A. 若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B. 当k>0时,y随x的增大而减小
C. 过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D. 反比例函数的图象关于直线y=﹣x成轴对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com