精英家教网 > 初中数学 > 题目详情

【题目】初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:

1)本次调查共抽测了多少名学生?

2)在这个问题中的样本指什么?

3)如果视力在4.9-5.1(含4.95.1)均属正常,那么全市有多少名初中生视力正常?

【答案】1)共抽测了240名学生 (2)样本是240名学生的视力情况

3

【解析】

试题(1)共抽测了学生人数:20+40+90+60+30=240(名)

2)易知题意为调查某市3万学生是哩情况所抽取学生视力情况样本,故样本是240名学生的视力情况

3)依题意知,视力在4.9-5.1(含4.95.1)均属正常,可从直方图判断一共有(60+30)人合格.故3万学生合格人数为:

(名)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,点ECD上一点,AEBE分别平分∠DAB,∠CBA

1)求证:AEBE

2)求证:DE=CE

3)若AE=4BE=6,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A30),B03),过点By轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点CCEOC交直线l于点E

1)求∠OBA的度数,并直接写出直线AB的解析式;

2)若点C的横坐标为2,求BE的长;

3)当BE1时,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于的二次函数为常数)与轴交于两个不同的点,与轴交于点,其图象的顶点为点是坐标原点.

1)若,求此二次函数的解析式并写出二次函数的对称轴;

2)如图1,若为直角三角形,是以的等边三角形,试确定的值;

3)设为正整数,且为任意常数,令,如果对于一切实数始终成立,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物AC顶部有一旗杆AB,且点ABC在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73≈1.41

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务:

阿基米德是有史以来最伟大的数学家之一,阿基米德的折弦定理是其推导出来的重要定理之一.阿基米德折弦定理:如图,AB和BC是O的两条弦(即折线ABC是O的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.

证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.

∵M是弧ABC的中点,

∴MA=MC.

请按照上面的证明思路,写出该证明的剩余部分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A=∠BAE=BE,点DAC边上,∠1=∠2AEBD相交于点O

1)求证:AECBED

2)若∠1=42°,求BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)

最高气温(单位:摄氏度)

需求量(单位:杯)

T<25

250

300

400

1)求去年六月份最高气温不高于30℃的天数.

2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过250杯的概率.

3)若今年六月份每天的进货量均为350杯,每杯的进价为5元,售价为10元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足大于等于25℃小于30 ,试估计这一天销售这种鲜奶所获得的利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?

说明理由.(1.732)

查看答案和解析>>

同步练习册答案