精英家教网 > 初中数学 > 题目详情

【题目】如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.

(1)请完成如下操作:

①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;

②根据图形提供的信息,在图中标出该圆弧所在圆的圆心D.

(2)请在(1)的基础上,完成下列填空:

①写出点的坐标:D( );

②⊙D的半径= (结果保留根号);

③利用网格试在图中找出格点E ,使得直线EC与⊙D相切(写出所有可能的结果).

【答案】(1)见解析;(2)(2,0);2③(7,0).

【解析】

(1)根据题意建立平面直角坐标系,然后作出弦AB的垂直平分线,以及BC的垂直平分线,两直线的交点即为圆心D,连接AD,CD;
(2)①根据第一问画出的图形即可得出D的坐标;
②在直角三角形AOD中,由OAOD的长,利用勾股定理求出AD的长,即为圆D的半径;
③根据半径相等得出CD=AD=2EF=x,RtCDERtCEF根据勾股定理列出两个式子即可求出x的值从而求出E点坐标

(1)根据题意画出相应的图形,如图所示:

(2)①根据图形得:D(2,0);

②在RtAOD中,OA=4,OD=2,

根据勾股定理得:AD==2

D的半径为2

③∵EC与⊙D相切

CEDC

CDE为直角三角形即∠DCE=90°

ADCD都是圆D的半径

∴由②知,CD=AD=2

EF=x

RtCDE,(22+CE2=(4+x)2

RtCEF,22+x2=CE2

(22+(22+x2)=(4+x)2

解得,x=1,即EF=1

OE=2+4+1=7

E点坐标为(7,0)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题满分10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.

1)求每张门票原定的票价;

2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图圆柱形水管内原有积水的水平面宽CD=20cm水深GF=2cm若水面上升2cmEG=2cm),则此时水面宽

AB为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:

(1)小强去学校时下坡路长 千米;

(2)小强下坡的速度为 千米/分钟;

(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是 分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初二数学兴趣小组活动时,碰到这样一道题:

“已知正方形AD,点EFGH分别在边ABBCCDDA上,若,则EG=FH”.

经过思考,大家给出了以下两个方案:

(甲)过点AAMHFBC于点M,过点BBNEGCD于点N

(乙)过点AAMHFBC于点M,作ANEGCD的延长线于点N

1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1)

2)如果把条件中的“”改为“EGFH的夹角为45°”,并假设正方形ABCD的边长为1FH的长为(如图2),试求EG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交O于点D.

(1)∠ADC的度数;

(2)求弦BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.

(1)当每间商铺的年租金定为13万元时,能租出   间.

(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD中,EF分别是ABCB上的点,且AECFCEAFM,∠CMF45°,则的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,延长于点,延长于点,过点,交的延长线于点,则=_________

查看答案和解析>>

同步练习册答案