精英家教网 > 初中数学 > 题目详情

【题目】十三五以来,山西省共解决372个村、35.8万农村人口的饮水型氟超标问题,让农村群众真正喝上干净水、放心水、安全水.某公司抓住商机,根据市场需求代理两种型号的净水器,已知每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.

1)求每台型,型净水器的进价各是多少元?

2)该公司计划购进两种型号的净水器共55台进行试销,其中型净水器为台,购买两种净水器的总资金不超过10.8万元.则最多可购进型号净水器多少台?

【答案】1)每台型净水器的进价是 2000 元,每台型净水器的进价是 1800 元;(2)最多可购进型净水器 45 台.

【解析】

1)设每台型净水器的进价是元,根据题意找到等量关系列出分式方程,再解方程即可得解;

(2)设购进型净水器台,根据题意找到不等量关系列出一元一次不等式,再解不等式求出最大整数解即可.

解:(1)设每台型净水器的进价是

根据题意,得

解得

经检验,是原分式方程的解,且符合题意

答:每台型净水器的进价是元,每台型净水器的进价是元;

2)设购进型净水器台,则购进型净水器

依题意得,

解得

取最大整数解

答:最多可购进型净水器台.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】分块计数法:对有规律的图形进行计数时,有些题可以采用分块计数的方法.

例如:图16个点,图212个点,图318个点,……,按此规律,求图10、图n有多少个点?

我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是      

请你参考以上分块计数法,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:

(1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.

(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线

若该抛物线经过点,试求的值及抛物线的顶点坐标.

求此抛物线的顶点坐标(用含的代数式表示) ,并证明:不论为何值,该抛物线的顶点都在同一条直线上.

直线截抛物线所得的线段长是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,ABCD,∠ABC=60°AB=BC=4CD=3

(1)如图1,求△BCD的面积;

(2)如图2MCD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点NNQBC,垂足为Q,设NQ=nBQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;

②推断:的值为   

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AGBE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG=6,GH=2,则BC=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,过点作直线,将绕点顺时针旋转得到(点的对应点分别为).

1)问题发现如图1,若重合时,则的度数为____________

2)类比探究:如图2,设BC的交点为,当的中点时,求线段的长;

3)拓展延伸在旋转过程中,当点分别在的延长线上时,试探究四边形的面积是否存在最小值.若存在,直接写出四边形的最小面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第 x 天的成本 y(元/件)与 x(天)之间的关系如图所示,并连续 60 天均以 80 /件的价格出售, x 天该产品的销售量 z(件)与 x(天)满足关系式 zx+15

1)第 25 天,该商家的成本是 元,获得的利润是 元;

2)设第 x 天该商家出售该产品的利润为 w 元.

①求 w x 之间的函数关系式;

②求出第几天的利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案