精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置(  )

A. 随点C的运动而变化

B. 不变

C. 在使PA=OA的劣弧上

D. 无法确定

【答案】B

【解析】

因为CP是∠OCD的平分线,所以∠DCP=OCP,所以∠DCP=OPC,则CDOP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.

解:连接OP

CP是∠OCD的平分线,

∴∠DCP=OCP
又∵OC=OP
∴∠OCP=OPC
∴∠DCP=OPC
CDOP
又∵CDAB
OPAB

PA=PB
∴点P是线段AB垂直平分线和圆的交点,
∴当C在⊙O上运动时,点P不动.
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图Rt△ABCACB=90°DCEABC绕着点C顺时针方向旋转得到的此时BCE在同一直线上

1)旋转角的大小

2)若AB=10AC=8BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD0.8 m,窗高CD1.2 m,并测得OE0.8 mOF3 m,求围墙AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于OACO直径,D的中点,过点DCB的垂线,分别交CBCA延长线于点FE

(1)判断直线EFO的位置关系,并说明理由;

(2)sinE,求ABEF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴相交于两点.若在抛物线上有且只有三个不同的点,使得的面积都等于,则的值是(

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现有一块钢板余料,它是矩形缺了一角, .王师傅准备从这块余料中裁出一个矩形为线段上一动点).设,矩形的面积为.

(1)求之间的函数关系式,并注明的取值范围;

(2)为何值时,取最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在港口A的南偏东37°方向的海面上,有一巡逻艇BAB相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?

(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75sin67°≈cos67°≈tan67°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点AB的坐标分别为(80)、(02),CAB的中点,过点Cy轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点Px轴的垂线,垂足为E,连接BPEC.当BP所在直线与EC所在直线垂直时,点P的坐标为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案