精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,ABACAB=1,BC,对角线ACBD相交于点O,将直线AC绕点O顺时针旋转,分别交BCADEF.

(1)BD的长;

(2)当旋转角∠AOF=________° 时,AOFBOE的面积相等?请写出理由.

【答案】(1);(2)90.

【解析】(1)Rt△ABC中,根据勾股定理求AC,由平行四边形性质求OA,Rt△BAO中,由勾股定理得BO=;

(2)FAD中点时,OFOE△AOD和△BOC的中线,能平分面积,此时OF是三角形ABD的中位线,则OF平行于AB,所以∠AOF=∠BAC=90°.

解:(1)Rt△ABC中,AB=1,BC=

AC2.

四边形ABCD为平行四边形,

∴BD=2BO,AO=AC=1.Rt△BAO中,由勾股定理得BO=

BD2.

(2)90 理由如下:易证△BOE≌△DOF,

△AOF△BOE面积相等,则△AOF△DOF面积相等.

∵△AOF△DOF底边AFDF上的高相同,

∴AF=DF,即FAD的中点.

又∵OBD的中点,∴OFDAB的中位线,

OFAB

∴∠AOF=∠BAC90°.

故答案为90.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线P从原点O出发沿这条曲线向右运动速度为每秒个单位长度则第2018秒时P的坐标是(  )

A. (2016,0) B. (2017,0) C. (2018,0) D. (2017,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名队员参加射击训练,成绩被分别绘制成如下两个统计图:

根据以上信息,整理分析数据如下:

平均成绩()

中位数()

众数()

方差

a

7

7

1.2

7

b

8

4.2

(1)则表格中ab的值分别是a=________,b=________;

(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)

进价(元/件)

20

30

售价(元/件)

29

40

(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?

(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O在直径,AD,BC分别切⊙O于A,B两点,CD切⊙O于点E,连接OD,OC,下列结论:①∠DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正确的有(

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.在运动过程中,若点P,Q,O三点其中一个点恰好是另外两点为端点的线段的一个三等分点,则运动时间为_____秒.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道。有以下两个方案:

方案一:只取一个连接点P,使得像两个小区铺设的支管道总长度最短,在图中标出点P的位置,保留画图痕迹;

方案二:取两个连接点MN,使得点MC小区铺设的支管道最短,使得点ND小区铺设的管道最短. 在途中标出M、N的位置,保留画图痕迹;

设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1L2的大小关系为:L1_______L2(填“>”、“<”“=”)理由是____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF。已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。

(1)如图1,当t=3时,求DF的长;
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;
(3)连结AD,当AD将△DEF分成的两部分面积之比为1:2时,求相应t的值。

查看答案和解析>>

同步练习册答案