精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,BE平分∠ABCAC边于点E,

(1)如图1,过点EDEBCAB于点D,求证:BDE为等腰三角形;

(2)如图2,延长BED,ADB =ABC, AFBDF,AD=2,BF=3,DF的长

(3)如图3,AB=AC,AFBD,ACD=ABC,判断BF、CD、DF的数量关系,并说明理由.

【答案】(1)证明见解析;(2)DF=1; (3)BF=CD+DF,理由见解析.

【解析】

(1)由角平分线和平行线的性质可得到∠BDE=∠DEB,可证得结论;

(2)AH=AD,可得AH=BH=AD=2,从而HF= 1,在△AHD中,AH=AD,AF⊥HD,

HF=FD=1;

(3)延长CDM,使得CM=BD,连接AM,过点AAN⊥CM于点N,则△ABD≌△ACM,根据全等三角形的性质可得出AD=AM,∠ADB=∠AMC,利用全等三角形的判定定理AAS可证出△ADF≌△ADN,根据全等三角形的性质可得出DF=DN=MN,再结合BD=CM即可找出BF=CD+DF.

(1)证明:

∵BE平分∠ABC,

∴∠ABE=∠EBC,

∵DE∥BC,

∴∠DEB=∠EBC=∠ABE,

∴BD=ED,

∴△DBE为等腰三角形;

(2)AH=AD,

∴∠AHD=∠D,

∴∠1=∠AHD,

∵∠AHD=∠1+∠3,

∴AH=BH=AD=2,

∴HF=BF-BH=3-2=1,

△AHD中,AH=AD,AF⊥HD,

∴HF=FD=HD,

∴DF=HF=1;

(3)解:在图中,延长CDM,使得CM=BD,连接AM,过点AAN⊥CM于点N,

∵BE平分∠ABC,∠ACD=∠ABC,

∴∠ACM=∠ABD.

在△ABD和△ACM中,

∴△ABD≌△ACM(SAS),

∴AD=AM,∠ADB=∠AMC,

∴∠AMD=∠ADM,

∴∠ADF=ADN.

∵AN⊥DM,

∴DN=MN.

在△ADF和△ADN中,

∴△ADF≌△ADN(AAS),

∴DF=DN=MN.

∵BD=CM,

∴BF=BC-DF=CM-MN=CN=CD+DN=CD+DF.

BF=CD+DF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=x2﹣2x+m(m>0)的对称轴与比例系数为5的反比例函数图象交于点A,与x轴交于点B,抛物线的图象与y轴交于点C,且OC=3OB.

(1)求点A的坐标;
(2)求直线AC的表达式;
(3)点E是直线AC上一动点,点F在x轴上方的平面内,且使以A、B、E、F为顶点的四边形是菱形,直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):

(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为 O的直径,弦AE//CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使 PED= C.

(1)求证:PE是 O的切线;
(2)求证:ED平分 BEP;
(3)若 O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是( )

A.10 海里
B.10 海里
C.10 海里
D.20 海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我省某工艺厂为全运会设计了一款成本为每件20元的工艺品,投放市场试销后发现每天的销售量y(件)是售价x(元/件)的一次函数。当售价为22元/件时,每天销售量为780件;当售价为25元/件时,每天销售量为750件。
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (x>0)的图像交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 AB,CD 相交于点O,OE 平分∠AOD,OF⊥OC.

(1)图中∠AOF 的余角是_____ _____(把符合条件的角都填出来);

(2)如果∠AOC=120°,那么根据____ ______,可得∠BOD=__________°;

(3)如果∠1=32°,求∠2∠3的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?

打折前一次性购物总金额

优惠措施

不超过400元

售价打九折

超过400元

售价打八折

查看答案和解析>>

同步练习册答案