【题目】如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.
(1)求此抛物线的解析式;
(2)求的面积;
(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.
【答案】(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为4
【解析】
(1)先根据一次函数的解析式求出A和C的坐标,再将点A和点C的坐标代入二次函数解析式即可得出答案;
(2)先求出顶点D的坐标,再过D点作DM平行于y轴交AC于M,再分别以DM为底求△ADM和△DCM的面积,相加即可得出答案;
(3)令y=4或y=-4,求出x的值即可得出答案.
解:(1)直线y=﹣x+2中,当x = 0时,y = 2;
当y=0时,0 =﹣x+2,解得x = 4
∴点A、C的坐标分别为(0,2)、(4,0),
把A(0,2)、C(4,0)代入
解得,
故抛物线的表达式为:y=﹣x2+x+2;
(2)y=﹣x2+x+2
∴抛物线的顶点D的坐标为,
如图1,设直线AC与抛物线的对称轴交于点M
直线y=﹣x+2中,当x = 时,y =
点M的坐标为,则DM=
∴△DAC的面积为=;
(3)当P到x轴的距离为4时,则
①当y=4时,﹣x2+x+2=4,
而,所以方程没有实数根
②当y= - 4时,﹣x2+x+2= - 4,
解得
则点P的坐标为或;
综上,存在一点P或,使它到x轴的距离为4.
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.
(1)求b、c的值;
(2)画出抛物线的简图并写出它与y轴的交点C的坐标;
(3)根据图象直接写出:点C关于直线x=2对称点D的坐标 ;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为 (用含m、n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,是的角平分线,,在边上,以为直径的半圆经过点,交于点.
(1)求证:是的切线;
(2)已知,的半径为,求图中阴影部分的面积.(最后结果保留根号和)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象与二次函数的图象相交于和,点是线段上的动点(不与重合),过点作轴,与二次函数的图象交于点.
(1)求的值;
(2)求线段长的最大值;
(3)当为的等腰直角三角形时,求出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,,的面积为42.
(1)如图,若点分别是边的中点,则四边形的面积是__________.
(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.
(1)该三角形的外接圆的半径长等于 ;
(2)用直尺和圆规作出该三角形的内切圆(不写作法,保留作图痕迹),并求出该三角形内切圆的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和m的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板按如图所示叠放在一起,其中点B,D重合,若固定△AOB,将△ACD绕着公共顶点A,按逆时针方向旋转α度(0<α<90°),当旋转后的△ACD的一边与△AOB的某一边平行时,写出所有满足条件的α的值____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com